素数筛法

小白我今天又来学习了,我今天可能就和素数过不去了
来看看埃氏筛

埃氏筛

时间复杂度:O(nlognnlogn)
原理:
素数就是除了1和本身之外没有其他的约数,所以有约数的都不是素数。根据这个原理得出了埃氏筛的思想,先去掉2的倍数,就是一旦找到2的倍数就标记一下,再去掉3的倍数,再去掉4的倍数……依此类推,直到最大数小于最后一个筛出的素数的平方,那么剩下的序列中所有的数都是素数
Code:

#include<iostream>
#include<cstring>
using namespace std;
bool numlist[100000005];//标记合数 
int prime[200000005];//存储素数 
int cnt;
void aishi(int n)//埃氏筛 
{
	for(int i=2;i<=n;i++)
	{
		if(numlist[i] == 0)
		{
			prime[++cnt] = i;
			//未被标记说明是素数,存储下来 
			for(int j=i;i*j<=n;j++)
				numlist[i*j] = 1;
				//将每一个i值得倍数标记为1 
		}
	}
}

int main()
{
	int n;	cin >> n;
	aishi(n);
	for(int i=1;i<=cnt;i++)
		printf("%d ",prime[i]);
	return 0;
}

欧拉筛

当然,埃氏筛效率还是低了些
例如
一个数24,它会被 2, 3, 4 三个数标记,这就重复了两次,更大的数同理,对于一些数据会超时,所以又来学习了时间复杂度更低的欧拉筛
时间复杂度:O(n)
原理:
把不是素数的筛掉,剩下的就都是素数
欧拉筛的关键是每个合数只被它最大的非自身的因数筛掉
例如:
12不会被4筛掉,而是被6筛掉
45不会被9筛掉,而是被15筛掉

Code:

bool numlist[100000005];
int prime[200000005];
int cnt;
void oula(int n)//欧拉筛 
{
	for(int i=2;i<=n;i++)
	{
		if(numlist[i] == 0)
			prime[++cnt] = i;
			//未被标记过的为素数,存储下来 
		for(int j=1;j<=cnt&&i*prime[j]<=n;j++)
		{
			numlist[i*prime[j]] = 1;
			//标记素数i与i的乘积 
			if(i % prime[j] == 0)
				break;
			//每个合数只被它最大的非自身的因数筛掉
		}
	}
	return ;
}

PS:
这种方法空间开销可能比较大,注意内存溢出
数据量大,建议使用 scanf,printf 函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

你数过天上的星星吗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值