小白我今天又来学习了,我今天可能就和素数过不去了
来看看埃氏筛
埃氏筛
时间复杂度:O(nlognnlogn)
原理:
素数就是除了1和本身之外没有其他的约数,所以有约数的都不是素数。根据这个原理得出了埃氏筛的思想,先去掉2的倍数,就是一旦找到2的倍数就标记一下,再去掉3的倍数,再去掉4的倍数……依此类推,直到最大数小于最后一个筛出的素数的平方,那么剩下的序列中所有的数都是素数
Code:
#include<iostream>
#include<cstring>
using namespace std;
bool numlist[100000005];//标记合数
int prime[200000005];//存储素数
int cnt;
void aishi(int n)//埃氏筛
{
for(int i=2;i<=n;i++)
{
if(numlist[i] == 0)
{
prime[++cnt] = i;
//未被标记说明是素数,存储下来
for(int j=i;i*j<=n;j++)
numlist[i*j] = 1;
//将每一个i值得倍数标记为1
}
}
}
int main()
{
int n; cin >> n;
aishi(n);
for(int i=1;i<=cnt;i++)
printf("%d ",prime[i]);
return 0;
}
欧拉筛
当然,埃氏筛效率还是低了些
例如
一个数24,它会被 2, 3, 4 三个数标记,这就重复了两次,更大的数同理,对于一些数据会超时,所以又来学习了时间复杂度更低的欧拉筛
时间复杂度:O(n)
原理:
把不是素数的筛掉,剩下的就都是素数
欧拉筛的关键是每个合数只被它最大的非自身的因数筛掉
例如:
12不会被4筛掉,而是被6筛掉
45不会被9筛掉,而是被15筛掉
Code:
bool numlist[100000005];
int prime[200000005];
int cnt;
void oula(int n)//欧拉筛
{
for(int i=2;i<=n;i++)
{
if(numlist[i] == 0)
prime[++cnt] = i;
//未被标记过的为素数,存储下来
for(int j=1;j<=cnt&&i*prime[j]<=n;j++)
{
numlist[i*prime[j]] = 1;
//标记素数i与i的乘积
if(i % prime[j] == 0)
break;
//每个合数只被它最大的非自身的因数筛掉
}
}
return ;
}
PS:
这种方法空间开销可能比较大,注意内存溢出
数据量大,建议使用 scanf,printf 函数