树状数组

蒟蒻最近碰到太多树状数组的题了,由于不太会简直是要崩溃了,先来看看一维的树状数组吧

树状数组是一种数据结构,可以用于解决区间求和,单点修改等问题,效率非常高。一般能用树状数组解决的问题都能用线段树解决,但是能用线段树解决的问题不一定能用树状数组解决。尽管树状数组应用的范围较小,但是在有些问题上,树状数组的效率比线段树要高
在这里插入图片描述
A为原数组,C为树状数组
C[1] = A[1]
C[2] = A[1] + A[2]
C[3] = A[3]
C[4] = A[1] + A[2] + A[3] + A[4]
C[5] = A[5]
C[6] = A[5] + A[6]
C[7] = A[7]
C[8] = A[1] + A[2] + A[3] + A[4] + A[5] + A[6] + A[7] + A[8]

树状数组巧妙的利用了二进制的特点,我们看上面的数组就可以发现,树状数组的下标转换成二进制,从右向左有k个连续的0,那么树状数组的这一项就有2 ^ k个原数组的元素加和
例如

1  1	k = 0(2^k = 1)    C[1] = A[1]; 
2  10	k = 1(2^k = 2)    C[2] = A[1]+A[2];
3  11	k = 0(2^k = 1)    C[3] = A[3];
4  100	k = 2(2^k = 4)    C[4] = A[1]+A[2]+A[3]+A[4];

明白了这些之后,我们就需要了解 lowbit 这个函数

ll lowbit(ll x)
{
	return x & (-x);
}

其中-x代表x的负数,x表示为二进制时,那么-x就是x的补码(x按位取反再加一),这样计算出的lowbit(x)就相当于之前的2 ^ k

4(100)  -4(100)  lowbit(4) = 100 = 4;
5(101)  -5(011)  lowbit(5) = 001 = 1;
6(110)  -6(010)  lowbit(6) = 010 = 2;

C[i] = A[i-2 ^ k+1] + A[i-2 ^ k+2] + … + A[i];
C[i] = A[i-lowbit(i)+1] + A[i-lowbit(i)+2] + … + A[i];

单点修改+区间查询

const int maxn = 2e6 + 7;
const int mod = 1e9 + 7;
/** keep hungry and keep calm! **/

int n,m;
ll a[maxn],c[maxn];
ll lowbit(ll x){return x & (-x);}
void Update(int i,ll k) // i位置上+k
{
	while(i <= n)
	{
		c[i] += k;
		i += lowbit(i);// 给每一个包含a[i]的位置都+k 
	}
}

ll getsum(int i) // 求前i项的和 
{
	ll ans = 0;
	while(i > 0)
	{
		ans += c[i];
		i -= lowbit(i);// 更新到下一个没有加和过的位置 
	}
	return ans;
}
/**
这里我解释一下为什么每次 **i -= lowbit(i)** 这样一步操作
假如我们一开始要求getsum(6)的值
ans += c[6] = a[5] + a[6]
这时a[5]已经加过了
然后更新 i 的值,此时 i = 6 - lowbit(6) = 4
所以这样一次操作之后
下次ans += c[4] = a[1] + a[2] + a[3] +a[4]
在更新一次 i 就达到了我们求和的目的,退出循环
**/

int main()
{
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++){
		scanf("%lld",&a[i]);
		Update(i,a[i]);// 树状数组初始化 
	}
	
	while(m--)
	{
		ll op,x,y;
		scanf("%lld%lld%lld",&op,&x,&y);
		if(op == 1){
			Update(x,y);
		}
		else{
			printf("%lld\n",getsum(y)-getsum(x-1));
		}
	}
	return 0;
}

区间修改+单点查询

树状数组的区间修改用到了之前学过的差分
树状数组的区间修改可以转变为差分数组的两个单点修改

const int maxn = 2e6 + 7;
ll n,m;
ll op,x,y,k;
ll a[maxn],c[maxn];
ll lowbit(ll x){return x & (-x);}
void Update(ll i,ll k) // i位置上+k
{
	while(i <= n)
	{
		c[i] += k;
		i += lowbit(i);// 给每一个包含a[i]的位置都+k 
	}
}

ll getsum(ll i) // 求前i项的和 
{
	ll ans = 0;
	while(i > 0)
	{
		ans += c[i];
		i -= lowbit(i);// 更新到下一个没有加和过的位置 
	}
	return ans;
}

int main()
{
	cin >> n >> m;
	for(int i=1;i<=n;i++){
		scanf("%lld",&a[i]);
		Update(i,a[i]-a[i-1]);// 树状数组初始化为差分数组 
	}
	
	while(m--)
	{
		cin >> op;
		if(op == 1){
			scanf("%lld%lld%lld",&x,&y,&k);
			Update(x,k);
			Update(y+1,-k);
			// 区间修改转变成差分数组单点修改 
		}
		else{
			scanf("%lld",&x);
			printf("%lld\n",getsum(x));
		}
	}
	return 0;
}

区间修改+区间查询

a为原数组,c为差分数组
c[i] = a[i] - a[i-1]
然后我们知道a[i] = c[1] + c[2] + … + c[i]
那么
a[1] + a[2] + … + a[i]
= c[1] + (c[1]+c[2]) + … + (c[1]+c[2]+…+c[i])
= i * c[1] + (i-1) * c[2] + … + c[i]
= i * (c[1]+c[2]+…+c[i]) - 1 * c[2] - … - (i-1) * c[i]
于是我们再定义一个数组c1
c1[i] = (i-1) * c[i]
这样之前的式子就可以表示为
a[1] + a[2] + … + a[i]
= i * (c[1]+c[2]+…+c[i]) - (c1[1]+c1[2]+…+c1[i])
所以要维护c和c1两个数组
c[i] = c[i]
c1[i] = (i-1) * c[i]

void Update(itn i,int k)
{
	int x = i;
	while(i <= n)
	{
		c[i] += k;
		c1[i] += k*(x-1);
		i += lowbit(i);
	}
}

int getsum(int i) // 求前缀和 
{
	int ans = 0,x = i;
	while(i > 0)
	{
		ans += x*c[i]-c1[i];
		i -= lowbit(i);
	}
	return ans;
}

整体的代码可以写成这样

const int maxn = 2e6 + 7;
const int mod = 1e9 + 7;
/** keep hungry and keep calm! **/

int n,m;
ll res;
ll a[maxn],c[maxn],c1[maxn];
ll lowbit(ll x)
{
	return x & (-x);
}

void Update(ll *t,int i,ll k)
{
	while(i <= n)
	{	
		t[i] += k;	
		i += lowbit(i);	
	}
}

ll getsum(ll *t,int i) // 求前缀和 
{
	ll ans = 0;
	while(i > 0)
	{
		ans += t[i];
		i -= lowbit(i);
	}
	return ans;
}

int main()
{
	scanf("%d%d",&n,&m); 
	for(int i=1;i<=n;i++){
		scanf("%lld",&a[i]);
		Update(c,i,a[i]-a[i-1]);
		Update(c1,i,(i-1)*(a[i]-a[i-1]));
		// 初始化树状数组的差分数组 
	}

	while(m--)
	{
		ll op,x,y,k;
		scanf("%lld",&op);
		if(op == 1)
		{
			scanf("%lld%lld%lld",&x,&y,&k);
			Update(c,x,k);
			Update(c,y+1,-k);
			Update(c1,x,(x-1)*k);
			Update(c1,y+1,-y*k);
		}
		else
		{
			scanf("%lld%lld",&x,&y);
			res = y*getsum(c,y)-getsum(c1,y);
			res -= (x-1)*getsum(c,x-1)-getsum(c1,x-1);
			printf("%lld\n",res);
		}
	}
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

你数过天上的星星吗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值