题目:
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree [1,2,2,3,4,4,3]
is symmetric:
1 / \ 2 2 / \ / \ 3 4 4 3
But the following [1,2,2,null,3,null,3]
is not:
1 / \ 2 2 \ \ 3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
思路:
1、递归:和Leetcode 100的思路基本一致,唯一的区别就是在递归的时候,用第一棵树的左子树和第二颗树的右子树对比,用第一棵树的右子树和第二颗数的左子树对比而已。时间复杂度和空间复杂度和Leetcode 100的完全一样。
2、迭代:迭代版实际上就是宽度优先搜索了。我们采用两个队列,依次存放左右两棵子树的节点,只不过右子树的节点需要反向存储。然后依次比较两个队列队首元素是否相同即可。虽然没有用递归,但是迭代版算法的空间复杂度仍然最高可以达到O(n),这是因为如果树足够平衡,那么队列中存储的元素的个数最多可以达到O(n)量级。时间复杂度仍然是O(n)。
代码:
1、递归:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isSymmetric(TreeNode* root) {
if (root == NULL) {
return true;
}
return isSymmetric(root->left, root->right);
}
private:
bool isSymmetric(TreeNode* root1, TreeNode* root2) {
if (root1 == NULL && root2 == NULL) {
return true;
}
else if (root1 == NULL) {
return false;
}
else if (root2 == NULL) {
return false;
}
else {
if (root1->val != root2->val) {
return false;
}
if (!isSymmetric(root1->left, root2->right)) {
return false;
}
if (!isSymmetric(root1->right, root2->left)) {
return false;
}
return true;
}
}
};
2、迭代:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isSymmetric(TreeNode* root) {
if (root == NULL) {
return true;
}
TreeNode *left, *right;
queue<TreeNode*> q1, q2;
q1.push(root->left);
q2.push(root->right);
while (!q1.empty()) { // q1 and q2 will always be the same size
left = q1.front();
q1.pop();
right = q2.front();
q2.pop();
if (left == NULL && right == NULL) {
continue;
}
else if (left == NULL || right == NULL) {
return false;
}
else {
if (left->val != right->val) {
return false;
}
q1.push(left->left);
q1.push(left->right);
q2.push(right->right);
q2.push(right->left);
}
}
return true;
}
};