[Leetcode] 120. Triangle 解题报告

题目

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

思路

本题也是典型的动态规划题目,有点类似于Pascal Triangle。比较直观的思路是从上往下扫描,但是更巧妙的思路是从下往上扫描。不过无论如何,算法的时间复杂度都是O(n),空间复杂度也为O(n)。

代码

1、从上往下扫描:

class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) 
    {
        if(triangle.size() == 0) {
            return 0;
        }
        vector<int> dp;
        dp.push_back(triangle[0][0]);
        for (int i = 1; i < triangle.size(); ++i) {
            vector<int> temp(dp);
            dp[0] = temp[0] + triangle[i][0];
            for(int j = 1; j <= i - 1; ++j) {
                dp[j] = std::min(temp[j - 1], temp[j]) + triangle[i][j];
            }
            dp.push_back(temp[i - 1] + triangle[i][i]);
        }
        int minValue = std::numeric_limits<int>::max();
        for(int i = 0; i < dp.size(); ++i) {
            if(dp[i] < minValue) {
                minValue = dp[i];
            }
        }
        return minValue;
    }
};

2、从下往上扫描:

class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) {
        if(triangle.size() == 0) {
            return 0;
        }
        int len = triangle.size();  
        vector<int> dp(triangle[len - 1].size());  
        for(int i = 0; i < dp.size(); i++) {
            dp[i] = triangle[len-1][i]; 
        }
        for(int i = len - 2; i >= 0; i--) {
            for(int j = 0 ; j < triangle[i].size(); j++) {
                dp[j] = min(dp[j], dp[j + 1]) + triangle[i][j];
            }
        }
        return dp[0];  
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值