02_Python官方学习文档总结
文章目录
2 深入流程控制
除了while之外,Python按使用其他语言中的已知的常规
流控制语句,但有一些曲折。
2.1 if声明
最著名的语句类型是if语句。例如
>>> x = int(input("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:
... x = 0
... print('Negative changed to zero')
... elif x == 0:
... print('Zero')
... elif x == 1:
... print('Single')
... else:
... print('More')
...
More
可以由0个或多个elif部分,并且改else部分是可选的。关键字 elif 是 else if 的缩写,对于避免过度缩进很有用。 if …elif…elif…序列替代switch或case其他语言中的语句
2.2 for声明
for 在Python中的语句和C或者Pascal中使用的语句有些不同。Python的for语句不是对数字的算术级数进行迭代,(例如在Pascal),也不是让用户能定义迭代步骤和暂停条件(例如C),而是对任何序列的项(列表或字符串)进行迭代,按他们在序列中出现的位置来排序。例如:
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
... print(w, len(w))
...
cat 3
window 6
defenestrate 12
如果需要修改循环中要迭代的序列,建议首先进行复制,因为遍历序列不会因生的创建副本。切片操作更适合这种操作,
>>> for w in words[:]: # Loop over a slice copy of the entire list.
... if len(w) > 6:
... words.insert(0, w)
...
>>> words
['defenestrate', 'cat', 'window', 'defenestrate']
使用for w in words:
,该示例将尝试创建一个无限列表,一遍又一遍地插入。
2.3 range()功能
如果需要遍历一个数字序列,则内置函数range()会派上用场。他生成算术级数:
>>> for i in range(5):
... print(i)
...
0
1
2
3
4
给定的终点永远不会成为生成序列的一部分;range(10)生成10个值,这是长度为10的序列的项目的合法索引。可以使范围从一个数字开始,或者指定一个不同的增量(甚至为负;有事也称呼为步长);
range(5, 10)
5, 6, 7, 8, 9
range(0, 10, 3)
0, 3, 6, 9
range(-10, -100, -30)
-10, -40, -70
要遍历序列的索引,可以结合使用range(),len(),如下所示:
>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
... print(i, a[i])
...
0 Mary
1 had
2 a
3 little
4 lamb
但是,大多数此类型下,使用 enumerate()功能很方便,请参见Looping Techniques。
如果仅打印范围,泽会出现奇怪的事情
>>> print(range(10))
range(0, 10)
在许多方面,range()返回的对象的香味就像一个列表,但实际上并非如此。他是一个度一项,当对他进行迭代时,他会返回所需序列的后续项,但是他没有真正的组成列表从而节省了空间。
我们说这样的对象是可迭代的,即适合用作功能和构造的目标,这些功能和构造期望可以从中获取连续的物品,直到用完为止。我们已经看到for语句就是这样的迭代器。
list()是另一个能从可迭代对象中创建列表的函数:
>>> list(range(5))
[0, 1, 2, 3, 4]
2.4 break 和 continue以及else循环字句
break和C中一样,该语句也脱离最里面封闭的for或者 while虚幻
循环语句可以有一个else字句;当虚幻通过用尽列表而终止(使用for)或条件为假(使用while)时,将执行此命令,但在循环被break语句终止时则不会执行。例如以下的搜索质数
>>> for n in range(2, 10):
... for x in range(2, n):
... if n % x == 0:
... print(n, 'equals', x, '*', n//x)
... break
... else:
... # loop fell through without finding a factor
... print(n, 'is a prime number')
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3
(是的,没错,这是正确的代码,仔细一看;else是属于for循环的,不是if)
与循环一起使用时,该else
子句与语句的else
子句try
比与语句 的子句有更多的共同点 if
:在没有异常发生时,try
语句的else
子句运行;在没有异常发生时,循环的else
子句运行break
。有关该try
语句和异常的更多信息,请参见 处理异常。
该continue
语句也是从C借来的,继续循环的下一个迭代:
>>> for num in range(2, 10):
... if num % 2 == 0:
... print("Found an even number", num)
... continue
... print("Found a number", num)
Found an even number 2
Found a number 3
Found an even number 4
Found a number 5
Found an even number 6
Found a number 7
Found an even number 8
Found a number 9
2.5 pass声明
pass
语句不执行任何操作。当在语法上需要一条语句但该程序不需要任何操作时,可以使用它。例如:
>>>
>>> while True:
... pass # Busy-wait for keyboard interrupt (Ctrl+C)
...
这通常用于创建最少的类:
>>>
>>> class MyEmptyClass:
... pass
...
pass
当您在编写新代码时,可以将另一个位置用作函数或条件主体的占位符,从而使您可以继续进行更抽象的思考。将pass
被自动忽略:
>>>
>>> def initlog(*args):
... pass # Remember to implement this!
...
2.6 定义函数
我们可以创建一个将斐波那契数列写入任意边界的函数:
>>>
>>> def fib(n): # write Fibonacci series up to n
... """Print a Fibonacci series up to n."""
... a, b = 0, 1
... while a < n:
... print(a, end=' ')
... a, b = b, a+b
... print()
...
>>> # Now call the function we just defined:
... fib(2000)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597
关键字def
引入函数定义。它后面必须是函数名称和形式参数的括号列表。构成函数主体的语句从下一行开始,并且必须缩进。
函数主体的第一条语句可以选择是字符串文字;此字符串文字是函数的文档字符串或docstring。(有关文档字符串的更多信息,请参见文档字符串一节。)有些工具使用文档字符串自动生成在线或印刷文档,或让用户以交互方式浏览代码。最好在您编写的代码中包含文档字符串,因此请养成习惯。
函数的执行引入了用于函数的局部变量的新符号表。更准确地说,函数中的所有变量分配都将值存储在本地符号表中。变量引用首先在本地符号表中查找,然后在封闭函数的本地符号表中查找,然后在全局符号表中查找,最后在内置名称表中查找。因此,尽管可以引用全局变量和封闭函数的变量,但是不能在函数内直接为其赋值(除非对于全局变量,在global
语句中命名,或者对于封闭函数的变量,在nonlocal
语句中命名)。
函数调用的实际参数(参数)在被调用时被引入到被调用函数的本地符号表中。因此,参数是通过按值调用(其中值始终是对象引用而不是对象的值)传递的。1当一个函数调用另一个函数时,将为该调用创建一个新的本地符号表。
函数定义在当前符号表中引入函数名称。函数名称的值具有一种类型,该类型可以被解释器识别为用户定义的函数。可以将该值分配给另一个名称,该名称也可以用作功能。这用作一般的重命名机制:
>>>
>>> fib
<function fib at 10042ed0>
>>> f = fib
>>> f(100)
0 1 1 2 3 5 8 13 21 34 55 89
来自其他语言的对象可能fib
不是函数而是过程,因为它不返回值。实际上,即使没有return
语句的函数 也确实会返回一个值,尽管它很无聊。将该值称为None
(它是一个内置名称)。None
如果唯一写入的值,通常解释器会禁止写入该值。如果您确实想使用print()
:
>>>
>>> fib(0)
>>> print(fib(0))
None
编写一个返回斐波那契数列编号列表的函数很简单,而不是打印它:
>>>
>>> def fib2(n): # return Fibonacci series up to n
... """Return a list containing the Fibonacci series up to n."""
... result = []
... a, b = 0, 1
... while a < n:
... result.append(a) # see below
... a, b = b, a+b
... return result
...
>>> f100 = fib2(100) # call it
>>> f100 # write the result
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
像往常一样,此示例演示了一些Python新功能:
- 该
return
语句返回一个函数值。return
没有表达式参数的返回None
。从函数末尾掉落也会返回None
。 - 该语句
result.append(a)
调用列表对象 的方法result
。方法是一种“属于”对象的函数,并被命名为obj.methodname
,其中obj
是某个对象(可能是表达式),并且methodname
是由对象的类型定义的方法的名称。不同的类型定义不同的方法。不同类型的方法可以使用相同的名称,而不会引起歧义。(可以使用class定义自己的对象类型和方法,请参见Classes)。append()
示例中显示的方法是为列表对象定义的;它在列表的末尾添加了一个新元素。在此示例中,它等效于 ,但效率更高。result = result + [a]
2.7 有关函数的更多信息
2.7.1 默认参数值
最有用的形式是为一个或多个参数指定默认值。这将创建一个函数,该函数可以使用比其定义所允许的参数更少的参数来调用。例如:
def ask_ok(prompt, retries=4, reminder='Please try again!'):
while True:
ok = input(prompt)
if ok in ('y', 'ye', 'yes'):
return True
if ok in ('n', 'no', 'nop', 'nope'):
return False
retries = retries - 1
if retries < 0:
raise ValueError('invalid user response')
print(reminder)
可以通过几种方式调用此函数:
- 仅给出强制性参数:
ask_ok('Do you really want to quit?')
- 提供可选参数之一:
ask_ok('OK to overwrite the file?', 2)
- 甚至给出所有参数:
ask_ok('OK to overwrite the file?', 2, 'Come on, only yes or no!')
本示例还介绍了in
关键字。这测试序列是否包含某个值。
在定义范围内的函数定义点评估默认值 ,以便
i = 5
def f(arg=i):
print(arg)
i = 6
f()
将打印5
。
重要警告: 默认值仅被评估一次。当默认值是可变对象(例如列表,字典或大多数类的实例)时,这会有所不同。例如,以下函数累积在后续调用中传递给它的参数:
def f(a, L=[]):
L.append(a)
return L
print(f(1))
print(f(2))
print(f(3))
这将打印
[1]
[1, 2]
[1, 2, 3]
如果您不希望在后续调用之间共享默认值,则可以这样编写函数:
def f(a, L=None):
if L is None:
L = []
L.append(a)
return L
2.7.2 关键字参数
也可以使用 形式的关键字参数来调用函数kwarg=value
。例如,以下功能:
def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):
print("-- This parrot wouldn't", action, end=' ')
print("if you put", voltage, "volts through it.")
print("-- Lovely plumage, the", type)
print("-- It's", state, "!")
接受一个所需参数(voltage
)和三个可选参数(state
,action
,和type
)。可以通过以下任意一种方式调用此函数:
parrot(1000) # 1 positional argument
parrot(voltage=1000) # 1 keyword argument
parrot(voltage=1000000, action='VOOOOOM') # 2 keyword arguments
parrot(action='VOOOOOM', voltage=1000000) # 2 keyword arguments
parrot('a million', 'bereft of life', 'jump') # 3 positional arguments
parrot('a thousand', state='pushing up the daisies') # 1 positional, 1 keyword
但以下所有调用均无效:
parrot() # required argument missing
parrot(voltage=5.0, 'dead') # non-keyword argument after a keyword argument
parrot(110, voltage=220) # duplicate value for the same argument
parrot(actor='John Cleese') # unknown keyword argument
在函数调用中,关键字参数必须位于位置参数之后。传递的所有关键字参数都必须与函数接受的参数之一匹配(例如,该函数actor
不是有效的参数 parrot
),并且它们的顺序并不重要。这也包括非可选参数(例如,parrot(voltage=1000)
也有效)。任何参数都不能多次收到一个值。由于此限制,以下示例失败:
>>>
>>> def function(a):
... pass
...
>>> function(0, a=0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: function() got multiple values for keyword argument 'a'
当存在形式的最终形式参数时**name
,它会收到一个字典(请参阅映射类型— dict),其中包含除与形式参数相对应的那些参数以外的所有关键字参数。这可以与形式参数*name
(在下一个小节中描述)相结合,形式参数接收一个元组,该元组包含形式参数列表之外的位置参数。(*name
必须在**name
。之前发生。)例如,如果我们定义如下函数:
def cheeseshop(kind, *arguments, **keywords):
print("-- Do you have any", kind, "?")
print("-- I'm sorry, we're all out of", kind)
for arg in arguments:
print(arg)
print("-" * 40)
for kw in keywords:
print(kw, ":", keywords[kw])
可以这样称呼:
cheeseshop("Limburger", "It's very runny, sir.",
"It's really very, VERY runny, sir.",
shopkeeper="Michael Palin",
client="John Cleese",
sketch="Cheese Shop Sketch")
当然会打印:
-- Do you have any Limburger ?
-- I'm sorry, we're all out of Limburger
It's very runny, sir.
It's really very, VERY runny, sir.
----------------------------------------
shopkeeper : Michael Palin
client : John Cleese
sketch : Cheese Shop Sketch
请注意,关键字参数的打印顺序保证与在函数调用中提供它们的顺序匹配。
2.7.3 任意参数列表
最后,最不常用的选项是指定可以使用任意数量的参数调用函数。这些参数将包装在一个元组中(请参阅元组和序列)。在可变数量的参数之前,可能会出现零个或多个常规参数。
def write_multiple_items(file, separator, *args):
file.write(separator.join(args))
通常,这些variadic
参数将在形式参数列表中排在最后,因为它们会搜集传递给函数的所有其余输入参数。在*args
参数之后出现的任何形式参数都是“仅关键字”参数,这意味着它们只能用作关键字,而不能用作位置参数。
>>>
>>> def concat(*args, sep="/"):
... return sep.join(args)
...
>>> concat("earth", "mars", "venus")
'earth/mars/venus'
>>> concat("earth", "mars", "venus", sep=".")
'earth.mars.venus'
2.7.4 解压缩参数列表
当参数已经在列表或元组中,但需要为需要单独的位置参数的函数调用拆包时,则发生相反的情况。例如,内置range()
函数需要单独的 开始和停止参数。如果不能单独使用它们,请与*
运算符一起编写函数调用, 以将参数从列表或元组中解包:
>>>
>>> list(range(3, 6)) # normal call with separate arguments
[3, 4, 5]
>>> args = [3, 6]
>>> list(range(*args)) # call with arguments unpacked from a list
[3, 4, 5]
字典可以用相同的方式向**
运算符传递关键字参数 :
>>>
>>> def parrot(voltage, state='a stiff', action='voom'):
... print("-- This parrot wouldn't", action, end=' ')
... print("if you put", voltage, "volts through it.", end=' ')
... print("E's", state, "!")
...
>>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"}
>>> parrot(**d)
-- This parrot wouldn't VOOM if you put four million volts through it. E's bleedin' demised !
2.7.5 Lambda表达式
可以使用lambda
关键字创建小的匿名函数。此函数返回其两个参数的总和:。Lambda函数可在需要函数对象的任何地方使用。在语法上将它们限制为单个表达式。从语义上讲,它们只是正常功能定义的语法糖。像嵌套函数定义一样,lambda函数可以引用包含作用域中的变量:lambda a, b: a+b
>>>
>>> def make_incrementor(n):
... return lambda x: x + n
...
>>> f = make_incrementor(42)
>>> f(0)
42
>>> f(1)
43
上面的示例使用lambda表达式返回函数。另一个用途是传递一个小的函数作为参数:
>>>
>>> pairs = [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')]
>>> pairs.sort(key=lambda pair: pair[1])
>>> pairs
[(4, 'four'), (1, 'one'), (3, 'three'), (2, 'two')]
2.7.6 文档字符串
以下是有关文档字符串的内容和格式的一些约定。
第一行应始终是对象用途的简短摘要。为简洁起见,它不应明确声明对象的名称或类型,因为可以通过其他方式使用它们(除非名称恰好是描述函数操作的动词)。该行应以大写字母开头,以句点结尾。
如果文档字符串中还有更多行,则第二行应为空白,以可视方式将摘要与描述的其余部分分开。以下几行应为一个或多个段落,描述对象的调用约定,其副作用等。
Python解析器不会从Python中的多行字符串文字中删除缩进,因此,如果需要,处理文档的工具必须去除缩进。使用以下约定完成此操作。字符串第一行之后的第一行非空白行 确定整个文档字符串的缩进量。(我们不能使用第一行,因为它通常与字符串的开头引号相邻,因此其缩进在字符串文字中不明显。)然后,从字符串的所有行的开头剥离与该缩进“等效”的空格。缩进较少的行不应发生,但如果发生缩进,则应删除所有前导空格。制表符展开后(通常为8个空格),应测试空格的等效性。
这是一个多行文档字符串的示例:
>>>
>>> def my_function():
... """Do nothing, but document it.
...
... No, really, it doesn't do anything.
... """
... pass
...
>>> print(my_function.__doc__)
Do nothing, but document it.
No, really, it doesn't do anything.
2.7.7 功能注释
函数注释是关于用户定义函数使用的类型的完全可选的元数据信息(请参阅PEP 3107和 请参阅 PEP 484)。
注释__annotations__
作为字典存储在函数的属性中,对函数的任何其他部分均没有影响。参数注释由参数名称后的冒号定义,后跟一个评估注释值的表达式。返回批注由->
在参数列表和表示def
语句结尾的冒号之间的常量,后跟表达式定义。以下示例具有位置参数,关键字参数和带注释的返回值:
>>>
>>> def f(ham: str, eggs: str = 'eggs') -> str:
... print("Annotations:", f.__annotations__)
... print("Arguments:", ham, eggs)
... return ham + ' and ' + eggs
...
>>> f('spam')
Annotations: {'ham': <class 'str'>, 'return': <class 'str'>, 'eggs': <class 'str'>}
Arguments: spam eggs
'spam and eggs'
间奏曲:编码样式
现在您将要编写更长,更复杂的Python,现在是讨论编码风格的好时机。大多数语言可以写(或者更简洁,格式化),以不同的风格; 有些比其他更具可读性。使他人易于阅读您的代码始终是一个好主意,采用良好的编码风格对此有很大帮助。
对于Python, PEP 8已成为大多数项目所遵循的样式指南。它促进了一种非常易读且令人赏心悦目的编码风格。每个Python开发人员都应该在某个时候阅读它。以下是为您提取的最重要的要点:
-
使用4空格缩进,并且没有制表符。
小压痕(允许更大的嵌套深度)和大压痕(易于阅读)之间有4个空格是很好的折衷方案。标签会引起混淆,最好不要使用。
-
换行,使它们不超过79个字符。
这有助于小尺寸显示的用户,并可以在大尺寸显示上并排放置多个代码文件。
-
使用空行分隔函数和类,并在函数内部使用较大的代码块。
-
如果可能,在自己的一行上添加评论。
-
使用文档字符串。
-
在运算符周围和逗号后使用空格,但不要在方括号结构内直接使用。
a = f(1, 2) + g(3, 4)
-
一致地命名您的类和函数;该约定
UpperCamelCase
用于类以及lowercase_with_underscores
函数和方法。始终将self
其用作第一个方法参数的名称(有关类和方法的更多信息,请参见类的初看)。 -
如果您的代码打算在国际环境中使用,请不要使用奇特的编码。在任何情况下,Python的默认值,UTF-8或什至纯ASCII效果最佳。
-
同样,如果说不同语言的人阅读或维护代码的可能性很小,请不要在标识符中使用非ASCII字符。
脚注
间有4个空格是很好的折衷方案。标签会引起混淆,最好不要使用。
-
换行,使它们不超过79个字符。
这有助于小尺寸显示的用户,并可以在大尺寸显示上并排放置多个代码文件。
-
使用空行分隔函数和类,并在函数内部使用较大的代码块。
-
如果可能,在自己的一行上添加评论。
-
使用文档字符串。
-
在运算符周围和逗号后使用空格,但不要在方括号结构内直接使用。
a = f(1, 2) + g(3, 4)
-
一致地命名您的类和函数;该约定
UpperCamelCase
用于类以及lowercase_with_underscores
函数和方法。始终将self
其用作第一个方法参数的名称(有关类和方法的更多信息,请参见类的初看)。 -
如果您的代码打算在国际环境中使用,请不要使用奇特的编码。在任何情况下,Python的默认值,UTF-8或什至纯ASCII效果最佳。
-
同样,如果说不同语言的人阅读或维护代码的可能性很小,请不要在标识符中使用非ASCII字符。
脚注
-
实际上,按对象调用将是一个更好的描述,因为如果传递了可变对象,则调用者将看到被调用者对其进行的任何更改(将项目插入列表)。