助手 API 允许你在自己的应用程序中构建 AI 助手。助手具有指令,并可以利用模型、工具和文件来响应用户的查询。目前,助手 API 支持三种类型的工具:代码解释器、文件搜索和函数调用。
你可以通过助手 playground 探索助手 API 的功能,或者按照本指南中的逐步集成步骤构建。
概述
助手 API 的典型集成流程如下:
- 通过定义其自定义指令并选择模型来创建助手。如有需要,添加文件并启用 Code Interpreter、File Search 和 Function calling 等工具。
- 当用户开始对话时,创建一个 Thread。
- 当用户提出问题时,在 Thread 中添加消息。
- 运行助手在 Thread 上调用模型和工具生成响应。
本入门指南将逐步介绍创建和运行使用 Code Interpreter 的助手的关键步骤。在本示例中,我们将创建一个启用了 Code Interpreter 工具的个人数学辅导助手。
对 Assistants API 的调用要求您传递一个 beta HTTP 头。如果您使用 OpenAI 的官方 Python 或 Node.js SDK,这将自动处理。
OpenAI-Beta: assistants=v2
步骤 1:创建助手
助手代表一个实体,可以根据模型、指令和工具等多个参数进行配置,以响应用户的消息。
from openai import OpenAI
client = OpenAI()
assistant = client.beta.assistants.create(
name="Math Tutor",
instructions="You are a personal math tutor. Write and run code to answer math questions.",
tools=[{
"type": "code_interpreter"}],
model="gpt-4-turbo",
)
步骤 2:创建线程
线程表示用户与一个或多个助手之间的对话。当用户(或您的 AI 应用程序)与您的助手开始对话时,您可以创建一个线程。
thread = client.beta.threads.create()
步骤 3:向线程添加消息
用户或应用程序创建的消息内容被添加为消息对象到线程中。消息可以包含文本和文件。您可以向