H
签到
K
链表 模拟
J
栈/二分
很明显,如果0和1的数量不相等则肯定不能构成,否则一定可以。因为不能在左边添,所以从左往右枚举如果无法与前面的构成一对则它就是下一个需要输出的。配对情况用栈模拟即可。入栈输出,出栈标识符+1
二分写法过于复杂,即每次找到对应位置使得中间0和1数量相同,递归
#include <bits/stdc++.h>
using namespace std;
#define int long long
string str;
stack <char>sta;
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin>>str;
int num1=count(str.begin(),str.end(),'1');
int num0=count(str.begin(),str.end(),'0');
if(num1!=num0)
{
cout<<-1<<endl;
return 0;
}
cout<<num1<<endl;
int i=0;
int pos=1;
for(int i=0;i<str.size();i++)
{
char c=str[i];
if(sta.empty()||sta.top()==c)
{
sta.push(c);
cout<<pos<<" "<<c-'0'+1<<endl;
}
else
{
sta.pop();
pos++;
}
}
return 0;
}
M
搜索
暴力枚举每一种情况。这题那就难在用位运算,O(1)可得出每组的过题数
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N=2e5+10;
int T,n,m,nn=13,s[210],val[210],t[14];
int a[4],b[4];
char c;
bitset<20> p;
void dfs(int x,int y,int cnt,int sum,int ss)
{
if(sum>y) return ;
if(sum+x-cnt+1<y) return ;
if(cnt==x+1)
{
if(sum==y)
{
for(int i=1;i<=m;i++)
{
p=s[i]&ss;
val[i]=p.count();
//t[val[i]]++;
}
sort(val+1,val+m+1);
reverse(val+1,val+m+1);
if(val[a[1]]==b[1]&&val[a[2]]==b[2]&&val[a[3]]==b[3])
{
cout<<y<<endl;
bitset<20> q=ss;
for(int j=n-1;j>=0;j--)
if(q[j]) cout<<n-j<<" ";
exit(0);
}
/*int temp=0,k=1;
for(int i=y;i>=0;i--)
{
temp+=t[i];
if(i==b[k])
{
if(temp!=a[k])
{
for(int j=1;j<=m;j++)
t[val[j]]=0;
return ;
}
k++;
if(k==4)
{
cout<<y<<endl;
bitset<20> q=ss;
for(int j=n-1;j>=0;j--)
if(q[j]) cout<<n-j<<" ";
exit(0);
}
}
else if(temp>=a[k])
{
for(int j=1;j<=m;j++)
t[val[j]]=0;
return ;
}*/
}
return ;
}
dfs(x,y,cnt+1,sum+1,ss*2+1);
dfs(x,y,cnt+1,sum,ss*2);
}
void solve()
{
cin>>n>>m;
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
{
cin>>c;
s[i]<<=1;
if(c=='1') s[i]+=1;
}
for(int i=1;i<=3;i++)
cin>>a[i];
for(int i=1;i<=3;i++)
cin>>b[i];
for(int i=10;i<=min(nn,n);i++)
{
dfs(n,i,1,0,0);
}
cout<<-1;
}
signed main()
{
std::ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
//cin>>T;
T=1;
while(T--) solve();
}
D
二分答案
很容易发现不整齐度越大则方案越大,不整齐度越小方案越小。满足答案的单调性,使用二分答案。二分不整齐度检验方案数是否超过k,检验的方法为双指针,O(n)。最后总不整齐度就是检验的超过k的最小的不整齐度-1的总不整齐度+剩下方案的数量*超过k的最小的不整齐度
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N=1e6+10;
int T,n,k,a[N],l,r,b[N],c[N],cnt,bb[N],cc[N],ans;
int check(int x)
{
int rr=1,temp=0;
for(int i=1;i<=cnt;i++)
{
int y=b[i]+x;
while(rr+1<=cnt&&b[rr+1]<=y) rr++;
temp+=c[i]*(c[i]-1)/2+c[i]*(cc[rr]-cc[i]);
if(temp>=k) return temp;
}
return temp;
}
void solve()
{
cin>>n>>k;
for(int i=1;i<=n;i++)
cin>>a[i];
sort(a+1,a+n+1);
int temp=a[1],tot=1;
for(int i=2;i<=n;i++)
{
if(a[i]==temp) tot++;
else
{
b[++cnt]=temp;
c[cnt]=tot;
temp=a[i];
tot=1;
}
}
b[++cnt]=temp;
c[cnt]=tot;
for(int i=1;i<=cnt;i++)
{
cc[i]=c[i]+cc[i-1];
bb[i]=b[i]*c[i]+bb[i-1];
}
l=0,r=a[n]-a[1];
while(l<=r)
{
int mid=(l+r)>>1;
if(check(mid)>=k) {ans=mid;r=mid-1;}
else l=mid+1;
}
int rr=1,anss=0;
for(int i=1;i<=cnt;i++)
{
int y=b[i]+ans-1;
while(rr+1<=cnt&&b[rr+1]<=y) rr++;
anss+=c[i]*(bb[rr]-bb[i])-c[i]*b[i]*(cc[rr]-cc[i]);
}
anss+=(k-check(ans-1))*ans;
cout<<anss;
}
signed main()
{
std::ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
T=1;
//cin>>T;
while(T--) solve();
}
I
树形DP
当超过n天时,不管最初虫卵在哪,每天产生的新的虫卵都一样多。那么,我们只算前n天的虫卵,假设最初虫卵位置在x,那么对于点i前n天产生的虫卵数量就是:du[i]*(n-dis(x,i)),拆开后只需让后面那一项最小即可,使用树形DP求解。
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N=5e5+10;
int T,n,du[N],d[N],s[N],anss,f[N],an[N],cnt;
vector<int>son[N];
void init()
{
for(int i=1;i<=n;i++)
son[i].clear();
}
void dfs(int x,int fa)
{
s[x]=d[x]*son[x].size();
for(int i=0;i<son[x].size();i++)
{
int y=son[x][i];
if(y==fa) continue;
d[y]=d[x]+1;
dfs(y,x);
du[x]+=du[y];
s[x]+=s[y];
}
}
void treedp(int x,int fa)
{
for(int i=0;i<son[x].size();i++)
{
int y=son[x][i];
if(y==fa) continue;
f[y]=f[x]+(du[1]-du[y])-du[y];
if(f[y]==anss) an[++cnt]=y;
if(f[y]<anss)
{
cnt=1;
an[cnt]=y;
anss=f[y];
}
treedp(y,x);
}
}
void DP()
{
d[1]=0;
dfs(1,-1);
f[1]=s[1];
anss=f[1];
cnt=1;
an[cnt]=1;
treedp(1,-1);
}
void solve()
{
cin>>n;
init();
for(int i=1;i<n;i++)
{
int x,y;
cin>>x>>y;
son[x].push_back(y);
son[y].push_back(x);
}
for(int i=1;i<=n;i++)
du[i]=son[i].size();
DP();
cout<<cnt<<endl;
sort(an+1,an+cnt+1);
for(int i=1;i<=cnt;i++)
cout<<an[i]<<" ";
cout<<endl;
}
signed main()
{
std::ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
cin>>T;
while(T--) solve();
}
A
贪心+博弈论
开始时两者都会相向走直线。分奇偶。奇:两者走到中间空一格。考虑两种必胜情况:即A向下想左的和大于剩下的和B向上向右大于剩下的。如果无法保证这两种情况出现,两者向下/上走都无法保证赢。考虑两中平局情况后,第一行大A赢,第二行大B赢。偶同理
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N=2e5+10;
int T,n,a[3][N];
void init()
{
}
void solve()
{
cin>>n;
init();
for(int i=1;i<=2;i++)
for(int j=1;j<=n;j++)
cin>>a[i][j];
if(n&1)
{
int s1=0,s2=0,s3=0,s4=0;
for(int i=1;i<=n/2;i++)
s1+=a[1][i]+a[2][i];
for(int i=n/2+2;i<=n;i++)
s2+=a[1][i]+a[2][i];
for(int i=1;i<=n;i++)
s3+=a[1][i],s4+=a[2][i];
if(s1>s2+a[1][n/2+1]+a[2][n/2+1]) {cout<<"Mandy"<<endl;return ;}
if(s2>s1+a[1][n/2+1]+a[2][n/2+1]) {cout<<"brz"<<endl; return ;}
if(s3<s4&&(s1==s2+a[1][n/2+1]+a[2][n/2+1])) {cout<<"draw"<<endl; return ;}
if(s3>s4&&(s1+a[1][n/2+1]+a[2][n/2+1]==s2)) {cout<<"draw"<<endl; return ;}
if(s3>s4) {cout<<"Mandy"<<endl; return ;}
if(s3<s4) {cout<<"brz"<<endl; return;}
cout<<"draw"<<endl;
return ;
}
else
{
int s1=0,s2=0,s3=0,s4=0;
for(int i=1;i<=n/2;i++)
s1+=a[1][i]+a[2][i];
for(int i=n/2+1;i<=n;i++)
s2+=a[1][i]+a[2][i];
for(int i=1;i<=n;i++)
s3+=a[1][i],s4+=a[2][i];
if(s1>s2) {cout<<"Mandy"<<endl; return ;}
if(s2-a[1][n/2+1]-a[2][n/2+1]>s1+a[1][n/2+1]+a[2][n/2+1]) {cout<<"brz"<<endl; return ;}
if(s3<s4&&s1==s2) {cout<<"draw"<<endl; return ;}
if(s3>s4&&s2-a[1][n/2+1]-a[2][n/2+1]==s1+a[1][n/2+1]+a[2][n/2+1]) {cout<<"draw"<<endl; return ;}
if(s3>s4) {cout<<"Mandy"<<endl; return ;}
if(s3<s4) {cout<<"brz"<<endl; return;}
cout<<"draw"<<endl;
}
}
signed main()
{
std::ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
cin>>T;
while(T--) solve();
}
G
构造
先找到一个位置,使得在这个位置的值为0时,走到x2,y2后能到值y。x想方法先到和这个位置一列向下除到零,再上升到这个位置
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N=2e5+10;
int T,x1,y11,x2,y2,x,y,t;
void init()
{
}
void solve()
{
cin>>x1>>y11>>x2>>y2>>x>>y;
int xx1=x1,yy1=y11,xx2=x2,yy2=y2,xx=x,yy=y;
init();
bitset<33> s=y;
vector<int> ans,anss;
for(int i=32;i>=0;i--)
{
if(ans.size())
{
if(s[i]==0) ans.push_back(1);
else ans.push_back(1),ans.push_back(4);
}
else if(s[i]) ans.push_back(4);
}
for(int i=0;i<ans.size();i++)
{
if(ans[i]==4) x2--;
else y2--;
}
int p=log2(abs(x))+1;
for(int i=1;i<=p;i++)
{
anss.push_back(2);
y11--;
}
x=0;
if(x2>x1) {x+=x2-x1;t=4;}
else {x-=x1-x2;t=3;}
if(abs(x1-x2))
{
for(int i=1;i<=abs(x1-x2);i++)
anss.push_back(t);
}
int m=log2(abs(x))+1;
if(y11>y2) m=max(m,y11-y2);
for(int i=1;i<=m;i++)
{
anss.push_back(2);
y11--;
}
if(y2-y11)
{
for(int i=1;i<=y2-y11;i++)
anss.push_back(1);
}
for(int i=0;i<anss.size();i++)
{
if(anss[i]==1) cout<<'W';
if(anss[i]==2) cout<<'S';
if(anss[i]==3) cout<<'A';
if(anss[i]==4) cout<<'D';
}
for(int i=0;i<ans.size();i++)
{
if(ans[i]==1) cout<<'W';
if(ans[i]==2) cout<<'S';
if(ans[i]==3) cout<<'A';
if(ans[i]==4) cout<<'D';
}
cout<<endl;
}
signed main()
{
std::ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
cin>>T;
while(T--) solve();
}
C
推式子+构造
化简后发现只需让a排列为x x x...... m%x 0 0 0
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N=2e5+10;
int T,n,m,k,x,b[N],c[N],d[N],s,a[N];
__int128 sum,ans;
void init()
{
sum=s=ans=0;
}
void solve()
{
cin>>n>>m>>k>>x;
init();
for(int i=1;i<=n;i++)
cin>>b[i]>>c[i];
if(n*x<m) {cout<<"NO"<<endl; return ;}
for(int i=1;i<=n;i++)
{
sum+=(__int128)b[i]*c[i];
d[i]=c[i]-k*b[i];
}
for(int i=1;i<=n;i++)
{
if(s+x<=m)
{
a[i]=x;
s+=x;
}
else
{
a[i]=m-s;
s=m;
}
ans+=(__int128)a[i]*a[i]*k;
}
sort(d+1,d+n+1);
reverse(d+1,d+n+1);
for(int i=1;i<=n;i++)
ans+=(__int128)d[i]*a[i];
if(ans>sum) cout<<"YES"<<endl;
else cout<<"NO"<<endl;
}
signed main()
{
std::ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
cin>>T;
while(T--) solve();
}
F
f[i][j]表示以i为起点构成的递增序列中第i+2^j的点的编号。预处理每个点。询问时,倍增查找深度大于终点的最深的点
#include <bits/stdc++.h>
using namespace std;
//#define int long long
const int N=1e6+10;
int T,n,a[N],f[N][20],d[N],q;
vector<int> son[N];
map<int,int> mp;
void init()
{
}
void dfs(int x)
{
int p=0;
if(mp[a[x]]) p=mp[a[x]];
mp[a[x]]=x;
if(mp[a[x]+1])
{
f[x][0]=mp[a[x]+1];
for(int i=1;i<20;i++)
f[x][i]=f[f[x][i-1]][i-1];
}
for(int i=0;i<son[x].size();i++)
{
int y=son[x][i];
d[y]=d[x]+1;
dfs(y);
}
mp[a[x]]=p;
}
void solve()
{
cin>>n;
init();
for(int i=1;i<=n;i++)
cin>>a[i];
for(int i=2;i<=n;i++)
{
int x;
cin>>x;
son[x].push_back(i);
}
d[1]=1;
dfs(1);
cin>>q;
while(q--)
{
int s,t,ans=1;
cin>>s>>t;
for(int i=19;i>=0;i--)
{
if(f[s][i]&&d[f[s][i]]>=d[t])
{
s=f[s][i];
ans+=(1<<i);
}
}
cout<<ans<<endl;
}
}
signed main()
{
std::ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
T=1;
//cin>>T;
while(T--) solve();
}