关于从LSL流读取EEG数据并保存为edf

本文将介绍如何使用LSL(Lab Streaming Layer)库从实时生物电信号(EEG)流中读取数据,并将其保存为EDF(European Data Format)格式。通过这种方法,我们可以方便地记录和分析EEG数据,为脑机接口研究和其他相关领域提供有力支持。

  1. LSL简介: LSL是一个用于实时数据传输和接收的开源库,广泛应用于神经科学和生物医学领域。它提供了一个标准化的接口,使得不同设备和软件之间可以实现数据的无缝交流。在本文中,我们将使用LSL来接收实时的EEG数据流。

  2. 准备工作: 在开始之前,您需要进行以下准备工作:

  3. 连接EEG设备:将EEG设备与计算机连接,并确保其正常工作。
  4. 安装必要的依赖项:确保您的计算机上已安装所需的Python依赖项,包括numpy和pyedflib、pylsl。

接下来,我们将编写Python代码来实现从LSL流中读取EEG数据并保存为EDF格式。以下是一段示例代码:

import time
import numpy as np
from pyedflib import highlevel
from pylsl import resolve_byprop, StreamInlet

save_time_interval = 30


def sampling_data():
    global running, data
    start_time = time.time()
    while time.time() - start_time < save_time_interval:
        try:
            print(time.time())
            sample, timestamp = stream_inlet.pull_sample()
            print(sample)
            for i, d in enumerate(sample):
                data[i].append(d * 1e6)
        except Exception as e:
            print(e)
    stream_inlet.close_stream()


if __name__ == '__main__':
    running = True
    # ch_names = [str(_) for _ in list(range(64))]
    ch_names = ['Fp1', 'Fp2', 'F3', 'F4', 'C3', 'C4', 'P3', 'P4']
    streams = resolve_byprop("type", "EEG", timeout=1)
    if streams:
        print(streams)
        stream_inlet = StreamInlet(streams[0])
        save_path = "./test.edf"
        data = [[] for _ in ch_names]
        sampling_data()
        signal_headers = highlevel.make_signal_headers(ch_names, dimension='uV', sample_frequency=500,
                                                       physical_min=-250000, physical_max=250000)
        header = highlevel.make_header(patientname="", gender="")
        highlevel.write_edf(save_path, np.array(data), signal_headers, header)
        print("保存edf文件结束:{}".format(save_path))
    else:
        print("未找到lsl流")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值