
可视化
文章平均质量分 66
用python、R语言等进行各类作图分析
maizeman126
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
R语言——三维图
在这类图形中,两个变量绘制在x轴和y轴上,而第三个变量由图上的圆的面积或“气泡”表示。基础R中的symbols()函数可以创建气泡图,而DescTools包中的PlotBubble()函数更易于理解。我们还可以用car包的scatter3d()函数来生成3d图。这类图成为伪色图(false-color plot),可以用lattice包的levelplot()函数实现。参数col=SetAlpha(as.numeic(Gender)+3)是Gender的两个值的颜色不同,并按色阶用三步设置颜色。原创 2025-06-22 01:00:00 · 369 阅读 · 0 评论 -
R语言——散点图矩阵和相关性分析图
完全正相关时, r = 1,表明两个定量变量在散点图上的所有点正好在一条上升的直线上。首先,我们可以在矩阵的对角线上绘制每个变量的分布,比如绘制直方图、密度图、箱线图、QQ图,还可以为每张图添加最小二乘曲线。要绘制相关性分析图,首先必须定义一个相关矩阵(correlation matrix),该矩阵包含数据集中所有变量对的相关系数,有cor()函数实现。GGally 包中的 ggscatmat() 函数可以实现把一部分图放在矩阵的下半部,另一部分放在上半部,也可将散点图矩阵与相关分析图相结合。原创 2025-06-21 01:00:00 · 945 阅读 · 0 评论 -
R语言——Q-Q图
对于这个数据集来说,我们可以比较男性顾客和女性顾客给的小费,或午餐和晚餐时给的小费。要实现这个需求,我们可以组织适当的数据子集,并绘制各组的QQ图。如果原始数据不满足分析给出有效结果的必要假设,有时可以应用数据函数(即变换)产生满足假设的数据,然后对变换后的数据进行分析。在图中,5 美元以下的情形看不出什么差异,但是高于5美元的小费更有可能是从男性顾客那里获得的。qqnorm() 函数,可以不用事先创建分位数变量就可以绘制QQ图,但仅用于检验数据的正态性。参考资料:R图形化数据分析。原创 2025-06-20 01:00:00 · 360 阅读 · 0 评论 -
R语言——Bland-Altman图
点代表了对象的两个测量值的平均值(水平轴)以及两个测量值之间的差值(垂直轴)。要计算协议限制,首先要找到差异的平均值(称之为m)和差异的标准差(称之为s)。这一点至关重要,如果Wright流计量器对统一对象的测量互不相同,那么试图评估与迷你流计量器的一致性是没有什么意义的。这是一张17个点的散点图,一个点对应研究中的一个对象。图上的点(x,y)被定义为x=一个对象的两个测量值的平均值,y=两个测量值之间的差值。Bland-Altman图用于评估两项测试技术之间的一致性,或测量的可靠性/可重复性。原创 2025-06-19 01:00:00 · 347 阅读 · 0 评论 -
R语言——高密度图
这不仅比向日葵图更加美观,而且也提供了更好的分辨率。例如,图中最大的黑点表示,受过大约 12 年教育(高中毕业)的人大多取得了 5~7 分的词汇成绩,但在向日葵图上是看不到这些情况。低学历的人词汇成绩偏低,分数随着受教育水平的提升而提升,这种看似合理的预期是否符合实际情况?上图的散点图并没有呈现清晰的趋势,因为这两个变量是离散的(discrete)。这和向日葵图相似,但重叠的点表示为区间(bin)中的总数,而不是点的形状。根据点的数量,这种类型的图在不同位置使用不同的符号。参考资料:R图形化数据分析。原创 2025-06-18 01:00:00 · 369 阅读 · 0 评论 -
R语言——散点图和折线图1
相同横坐标下,拟合线上的点和被拟合线上的点的垂直距离就是“误差”。拟合线有无数条,可以放在图上的“最佳拟合”是“误差”平方和最小的线,即“最小平方”线。有几种类型的平滑器,但它们在给定的x值(或相近的几个x值)都都显示了y的中心,连接这些点构成的线(通常是曲线)相对平滑。a图中,type="b"表示点和线,b图中的type="l"表示仅绘制线。涉及lattice包的目的是为了生成网格图,如下,用lattice为Puromycin数据绘制的图,在不同的窗口或面板(panel)分别展示处理和未处理的对象。原创 2025-06-17 01:00:00 · 614 阅读 · 0 评论 -
R语言——地毯图
它是一种一维的展示,可以添加到已有的图上,以说明其他类型图中没能呈现的信息。地毯图和带状图一样,沿坐标轴在各个点放置不同的符号,代表变量的值,只不过它是用短线来表示点。如果合适的话,例如搭配垂直的箱线图的情形,地毯图也可以放在图的左侧(side=2)或右侧(side=4)轴上。b图的箱形图呈偏态分布,但是仅凭箱线图我们不可能知道数据分布在哪里,而地毯图清晰地展示了这一点。图形上面的长细须,可能是几个分散的点或一个极值的结果。地毯图显示了所有点和它们的位置,包括一个极值和刚超过第三个四分位处聚集的几个点。原创 2025-06-16 01:00:00 · 142 阅读 · 0 评论 -
R语言——饼图
饼图(pie chart)通常用于占比展示。我们可以是pie()函数来生成饼图。当我们想强调整体重有一个切片代表的某一部分时,饼图也可以很好地满足需求。饼图的可替代方案是扇形图(fan plot)。参考资料:R图形化数据分析。原创 2025-06-15 01:00:00 · 235 阅读 · 0 评论 -
R语言——条形图
最后两张条形图中,各级别中代表男性和女性的条紧邻,而不同的级别是分开的。这是通过使用参数 space = c(1, 0, 1, 0, 1, 0) 实现的,它告诉 R:在第一个条前应该有一个大小为 1 的间隔,在第二个条前应该有一个为 0 的间隔,以此类推。的,甚至是按类区分的,所以断点通常是固定的或者说逻辑上不可移动的。最重要的区别是条的间距,另外,最后一张图的方向和其他图不同。图b使用了space = 1.5,所以条间隔很宽,即条间的宽度是条的 1.5 倍。如果需要,我们可以使用不同的断点定义条。原创 2025-06-14 01:00:00 · 379 阅读 · 0 评论 -
R语言——核密度图
当ecdf() 函数应用到小的数据集时(如sbp数据集),由于数据非常稀疏,以致图上的“曲线”有断点,这使此图缺乏吸引力且难以阅读。lines()接受的参数可以是包含定义先的点的向量,也可以是一对用来画线的变量x和y。想象一下,取几个相邻组的数值的加权平均值,并用连接这些平均值的平滑线代替直方图的值。首先,我们可以首先为欧洲的碳排放数据绘制密度图,然后用 lines() 函数在生成的图上绘制欧亚大陆的数据。在上图的a图的x轴标题显示了默认标签,代表样本的大小N和带宽(bandwidth)。原创 2025-06-13 01:00:00 · 1070 阅读 · 0 评论 -
R语言——直方图
最后,每个等级中男性和女性的工资分布有相同的中位数,但在教授和副教授级别中有更多的男性处于工资的高端。我们来生成一组直方图,为每个等级(3 个等级)和性别(2 种性别)的组合,或者说共 6 种组合,生成各自的直方图。然而,男性的分布不那么容易解释:因为柱形条的底部在不同的水平线上,很难比较它们的高度。注意 histogram() 命令的语法稍微不同,要做直方图的变量位于~符号右侧,由变量组合形成的组后紧跟竖线符号(|),使用星号(*)表示跨两个变量。这里使用的是基础函数,并未使用上述函数,但效果一样。原创 2025-06-12 01:00:00 · 798 阅读 · 0 评论 -
R语言——茎叶图
你也许不会将这种类型的图用在最后的展示中,但可能会发现这个优雅的工具有助于理解直方图,而且在项目的探索阶段它是有启发作用的。这种类型的图不仅可以揭示数据分布的大致形状,还可以显示每个数据点的值。许茎叶图看起来没有其他一些有好看形状和颜色的图吸引人,但此类图显示了所研究向量中的每个数字的精确值,这可以帮助理解数据,也有助于对图的修改。然后,为同一范围内的所有值保留一行,并且在适当的行上写下每个数值的最后一位有效数字。每个茎的宽度减半(即宽度为5而不是10),而茎的数量变成的之前的2倍。原创 2025-06-11 01:00:00 · 346 阅读 · 0 评论 -
R语言——箱线图
Mathach被拆分为多个组,生成的箱线图如下:这次par()函数通过给参数mfrow传递一个表示2行2列的向量来设置一页显示4张图。通过参数sub="text to appear"使每张图的x轴上有一个标签,表明生成此图的命令。还有一种不同类型的图会揭示更多的信息:箱线图可以展示几个关键信息,它们在带状图中是不明显的。这两个带状图仅能展示了数据大体的分布情况,且是在使用了极小符号"."的情况下才可以看得清楚。示例二:使用Nimrod数据集,用箱线图研究各种乐器及业余与专业剧团的表演时间的分布情况。原创 2025-06-10 01:00:00 · 381 阅读 · 0 评论 -
R语言——点图
颜色可以吸引观察者的注意,所以用参数col将点和标签设置为不同的颜色。图中的线也靠的非常近,为方便阅读,可以尝试逐条线交替使用不同的颜色显示。因为只指定了两种颜色,所以当R需要为第三个州添加颜色时,它会返回使用第一个颜色,依此类推,直到所有州都有颜色。请注意,数据框中的每一行有一个州名。现在,可以很容易看到哪个州谋杀逮捕率最高,哪个州谋杀逮捕率最低。当然,可以从数据表中看出这些信息,但通过这张图,一眼便可看出各州之间的相对差异。参数cex可以改变字符大小:cex的默认值为1,他的值越小,字符显示地就越小。原创 2025-06-09 01:00:00 · 410 阅读 · 0 评论 -
R语言——带状图
因此,即使是完全相同的数据,每次执行抖动的stripchart()命令时,结果也会略有不同的,但每个点在水平方向上的位置是相同。对于带状图来说,最好的符号是哪些重叠最少的符号,往往是空心圆(pch=1)或非常小的符号(pch=18或pch=20)。在上图的中,Volume的单个极值似乎没有处于适当的位置,超出了图像的范围,我们可以使用参数xlim延长坐标轴来解决这个问题。每一个参数可在图周围,以参数表示的形。adj表示“对齐”,参数=1表示在最右边,=0表示在最左边,0~1的值表示位于右边和右边的距离。原创 2025-06-08 01:00:00 · 854 阅读 · 0 评论 -
R语言——方差分析5
做方差分析时,可根据资料设计的类型及研究目的,将总变异分解为两个或多个部分,每个部分的变异可由某因素的作用来解释,通过比较可能由某因素所致的变异与误差(或组内)变异,即可了解该因素对测定结果有无影响。如果统计分析时只分析最后一次测量结果,会丧失很多“过程”,如测量指标的时间趋势等,而且在统计上,保留“处理”前得信息可以有效评价随机分组的均衡性,也能够提高统计分析的效率。根据输出结果,可以列出两个方差分析表,不同的method间差异显著,pressure在不同的method下不同时间变化的趋势不同。原创 2025-04-21 01:00:00 · 336 阅读 · 0 评论 -
R语言——条形图
barplot的第一个参数包含条形的长度,如果这是一个命名向量,那么这些名称将用作条形图上的标签。默认情况,条形图都是垂直的,但如果类型比较多,通常使用水平条形图。类似base系统,ggplot2默认使用竖直的条形图,添加coord_flip可使它翻转为水平的条形图。las参数(即label axis style的缩写)控制标签是水平还是垂直的、是平行的还是垂直于轴的。此参数的另一种选项是position="fill",它所创建的每个堆积条都具有同样的高度,范围是0~100%。2、lattice方法。原创 2025-04-11 01:00:00 · 319 阅读 · 0 评论 -
R语言——箱线图
箱线图(boxplot)也被称为盒须图或盒形图,可以让我们一次比较多个分布。虽然我们不能得到像直方图或核密度图那么多细节,但简单的高低和宽窄之间的比较是没有问题的。在本例中,我们可以直接将boxplot替换为bwplot(bw是b(box)和w(whisker)的简称)在某种意义上,如果我们重新把箱线图从小到大排序,这种类型的绘图往往会更清晰。base系统中绘制箱线图的函数是boxplot,它需要一个公式接口且需要data参数。在ggplots2中绘制箱线图只需要我们添加一个geom_boxplot。原创 2025-04-10 01:00:00 · 454 阅读 · 0 评论 -
R语言——直方图
ggplot2直方图是通过添加一个直方图的geom来创建的。lattice中的直方图与base类似,不过它还使用了一个data参数,这个参数使它能更易于分割成多个面板,且能把绘图保存为变量。lattice中的直方图能通过type参数为"count"、"density"或"percent"指定y轴的显示类型:计数、概率密度和百分比,默认是百分比。在base中可以使用hist函数绘制直方图,与plot函数一样,它没有data参数,须把数据框置于with中。如果我们要研究一个连续变量的分布,直方图是最佳的选择。原创 2025-04-09 01:00:00 · 563 阅读 · 0 评论 -
R语言——线图
与散点图一样,lattice也使用xyplot来画线图,但同样也要使用type="l"的参数。对于只有两条线的场景,还有一个更好的解决方案,它不需要任何的数据操作。然而,这样需要调用geom_line两次,且在实际应用中相对较少。在base图形系统中,线图与散点图的创建方式一样使用plot函数,不同的是线图采用参数type="l"。为线图额外添加附加线,可以使用lines函数在现有绘图中重叠绘出。在ggplots中从散点图切换到线图非常简单,只要把geom_point替换为geom_line即可。原创 2025-04-08 01:00:00 · 385 阅读 · 0 评论 -
R语言——散点图
轴的尺度需要以不同的方式指定。col能改变点的颜色,它可以接受任何通过colors返回的已命名颜色,或者向"#123456"的HTML风格的十六进制值。log="x"表示使用x轴为对数坐标,log="y"表示使用y轴为对数坐标,而log="xy"则表示同时使用x和y轴作为对数坐标。ggplot2不仅能识别来自base图形系统的命令来改变点的颜色和形状,而且也有自己的一套更加可读的名称。lattice系统的另一个好处是它能把绘图存储在变量中(base只能把绘图绘制在窗口),因而可在之后更改它们。原创 2025-04-07 01:00:00 · 1022 阅读 · 0 评论 -
R语言统计分析——ggplot2绘图6——图形外观修改
图例展示在图的顶部。一个连续的标尺可以把Salaries数据集中的yrs.since.phd变量的数值映射到x轴,同时将salary的变量映射到y轴。把palette="Set1"用其他的值(例如"Set2"、 "Set3"、 "Pastel1"、"Pastel2"、 "Paired"、 "Dark2"或"Accent")来代替将会产生不同的颜色方案。上例中,aes()函数的参数size=disp生成连续型变量(发动机排放)的标尺,并使用它来控制点的尺寸。连续型的标尺可以映射数值型的变量到图的其他特征。原创 2025-02-01 01:00:00 · 1118 阅读 · 0 评论 -
R语言统计分析——ggplot2绘图5——拟合光滑曲线
对于数据集中的大部分范围,男性能拿到更高的薪水。geom_smooth()函数依赖于stat_smooth()函数来计算画出一个你和曲线及其置信区间所需的数量。帮助页面对于geom_smooth()函数的介绍很少,但对stat_smooth()函数的介绍包含大量有用的信息。在这个例子中,我们可以使用带有95%置信区间的非参数光滑曲线( loess)。我们可以使用geom_smooth()函数来添加一系列的平滑曲线和置信区域。上图可以看出,经验和薪水之间不是线性的关系,至少在毕业时间很长的时候是这样。原创 2025-01-31 01:00:00 · 747 阅读 · 0 评论 -
R语言统计分析——ggplot2绘图4——刻面
如果组在途中并排出现而不是重叠为单一的图形,关系就是清晰的。值得注意的是横向排列便于组间比较。虽然颜色不是必要的,但它们可以帮助区分图形。上表中,var、rowvar和colvar是因子(factor)参考资料:R语言实战【第2版】原创 2025-01-30 01:00:00 · 270 阅读 · 0 评论 -
R语言统计分析——ggplot2绘图3——分组
薪水随着等级的增长而增长,但是重叠比较明显,比如一些助理教授与副教授或教授的薪水相同。随着学术等级的增长,薪水的范围也在扩大。变量包括rank(助理教授、副教授、教授)、sex(女性、男性)、yrs.since.phd(获得博士学位年数)、rs.service(工龄)和salary(以美元计的九个月薪水)。在上图中,学术等级用点的颜色来表示(红色代表助理教授,绿色代表副教授,蓝色代表教授),性别用形状来表示(圆形代表女性,三角形代表男性)。薪水随着毕业年数的增加而增加,但是它们之间的关系绝对不是线性的。原创 2025-01-29 01:00:00 · 371 阅读 · 0 评论 -
R语言统计分析——ggplot2绘图2——几何函数
把箱线图和小提琴图结合在一起形成一个新的图形(展示在图19-7中)。箱线图展示了在singer数据框中每个音部的25%、 50%和75%分位数得分和任意的异常值。实际的观察值(教师)是重叠的,因而给予一定的透明度以避免遮挡箱线图。ggplot()函数指定要绘制的数据源和变量,几何函数则指定这些变量如何在视觉上进行表示(使用点、线、条和阴影区)。需要注意的是,创建直方图时只有变量x是指定的,但创建箱线图时变量x和y都需要指定。每个的几何函数具有一组可以用来修改它的表示的选项。参考资料:R语言实战【第2版】原创 2025-01-28 01:00:00 · 1298 阅读 · 0 评论 -
R语言统计分析——ggplot2绘图1——综述
上面案例中,我们选用geom_point()函数来设置点的形状为三角形(pch=17),点的大小加倍(size=2),并使颜色为蓝色(color="blue")。geom_smooth()函数添加“平滑”曲线,选用线性拟合(method="lm"),并且产生一条红色(color="red")虚线(linestype=2),线条尺寸为1(size=1)。现在对上面的作图步骤进行拆解:ggplot()初始化图形并指定要用到的数据来源(mtcars)和变量(wt、mpg)。每个函数修改属于自己的部分。原创 2025-01-27 01:00:00 · 319 阅读 · 0 评论 -
R语言统计分析——图形文本、自定义坐标轴和图例
location:我们可以直接给定图例左上角的x、y坐标,也可以执行locator(1),然后通过鼠标单击给出图例的位置,还可以使用关键字bottom、bottomleft、left、topleft、top、topright、right、bottomright、或center放置图例。1=下,2=左,3=上,4=右。1=下,2=左,3=上,4=右。tck:刻度线的长度,以相对于绘图区与大小的分数表示(负值表示在图形外侧,正值表示在图形内侧,0表示禁用刻度,1表示绘制网格线),默认值为-0.01。原创 2024-06-13 01:00:00 · 1446 阅读 · 0 评论 -
R语言统计分析——图形的组合
我们可以在par()函数中使用图形参数mfrow=c(nrows,ncols)来创建按行填充的行数为nrows、列数为ncols的图形矩阵。如果我们想通过排布或叠加若干图形来创建单幅的、有意义的图形,这需要有对图形布局的精细控制能力。函数layout()的调用形式为layout(mat),其中mat是一个矩阵,它指定了所要组合的多个图形的所在位置。以下代码表示:第一幅图被置于第1行,另外两幅图被置于第2行。在以下代码中,我们再次将一幅图形置于第1行,两幅图形置于第2行。高度是第2行中图形高度的二分之一。原创 2024-06-19 19:38:19 · 895 阅读 · 0 评论 -
R语言统计分析——图形的简单示例
除了pdf(),还可以使用函数win.metafile()、png()、jpeg()、bmp()、tiff()、xfig()和postscript()将图形保存为其他格式。参考资料:R语言实战【第2版】原创 2024-06-11 01:00:00 · 277 阅读 · 0 评论 -
R语言统计分析——图形参数
举例来说:col=1,col='white',col='#FFFFFF',col=rgb(1,1,1),col=hsv(0,0,1)都是表示白色的等价方式。举例:在执行此语句:par(font.lab=3,cex.lab=1.5,font.main=4,cex.main=2)之后,创建的所有图形都将拥有斜体、1.5倍于默认文本大小的坐标轴标签(名称),以及粗斜体、2倍于默认文本大小的标题。mar:以数值向量表示的边界大小,顺序为“下、左、上、右”,单位为英分,默认值为c(5,4,4,2,)+0.1。原创 2024-06-12 01:00:00 · 1264 阅读 · 0 评论 -
pyecharts地图类型
"黔西南布依族苗族自治州": ["maps/gui4_zhou1_qian2_xi1_nan2_bu4_yi1_zu2_miao2_zu2_zi4_zhi4_zhou1", "js"],"克孜勒苏柯尔克孜自治州": ["maps/xin1_jiang1_ke4_zi1_le4_su1_ke1_er3_ke4_zi1_zi4_zhi4_zhou1", "js"],在pyecharts中地图时,提示地图类型,具体参考 pyecharts.datasets.map_filenames.json 文件;原创 2024-11-01 01:00:00 · 647 阅读 · 0 评论 -
R语言统计分析——马赛克图
在马赛克图中,嵌套矩形面积正比于单元格频率,其中该频率就是多维列联表中的频率。以基础安装中的Titanic数据集为例,它包含存活或死亡的乘客数、乘客的船舱等级、性别、以及年龄层。其中formula是标准的R表达式,data是一个数据框或表格。田间选项shade=TRUE将根据你和模型的皮尔逊残差值对图形上色,添加legend=TRUE将展示残差的图例。当变量时类别型变量时,若直观察单个类别型变量,可以使用柱状图或饼图;若存在两个类别型变量或更多时,我们可以使用马赛克图。其中table是数组形式的列联表。原创 2024-10-15 01:00:00 · 753 阅读 · 0 评论 -
R语言统计分析——相关图
首先看上图中下三角区域(主对角线下方的单元格):默认地,蓝色和从左下指向右上的斜杠表示单元格中的两个变量呈正相关;哪些被考察的变量与其他变量相关性很强,而哪些并不强?相关图作为一种相对现代的方法,可以通过相关系数矩阵的可视化来回答这些问题。以mtcars数据集的变量相关性为例,它含有11个变量,对每个变量都测量了32辆汽车。颜色的功能同上,而相关性大小由被填充的饼图块的大小来展示。当order=TRUE时,相关矩阵将使用主成分分析法对变量重排序,这将使得二元变量的关系模式更为明显。原创 2024-10-14 01:00:00 · 928 阅读 · 0 评论 -
R语言统计分析——折线图
因此,lines()函数通常是在plot()函数生成一幅图形之后再被调用。如果对图形有要求,我们可以先通过plot()函数中的type="n"选线来创建坐标轴、标题和其他图形特征,然后再使用lines()函数添加各种需要绘制的曲线。type="s"和type="S"都是生成阶梯线,但第一种类型是先横线再上升,而第二种类型是先上升再横线。其中,x和y是要连接的(x,y)点的数值型向量。注意,plot()和lines()函数工作原理不同。type="b"生成最常见的折线图。type="p"生成典型的散点图。原创 2024-10-13 01:00:00 · 1705 阅读 · 0 评论 -
R语言统计分析——气泡图
我们可以使用symbols()函数来创建气泡图。该函数可以在指定的(x,y)坐标上绘制圆圈图、方形图、星型图、温度计图和箱线图。text()函数是可选函数,此处用来添加各个汽车的名称。气泡图(bubble plot)用来展示三个定量变量间的关系:先创建一个二维散点图,然后用点的大小来代表第三个边变量的值。下面我们用mtcars数据集来绘制气泡图:x轴代表车重,y轴代表每加仑英里数,气泡大小代表发动机排量。其中x、y和radius是需要设定的向量,分别表示x、y坐标和圆圈半径。其中,z为第三个要绘制的变量。原创 2024-10-12 01:00:00 · 989 阅读 · 0 评论 -
R语言统计分析——散点图2(散点图矩阵、高密度散点图)
R语言还提供了许多其他的方式来创建散点图矩阵,如:glus包中的cpars()函数,TeachingDemos包中的pairs2()函数,HH包中的xysplom()函数,ResourceSelection包中的kepairs()函数和SMPracticals包中的pairs.mod()函数。值得注意的是,主对角线的上方和下方的六幅散点图是相同的,women也可以通过调整参数,只显示下三角或上三角的图形。由上图可看出,数据点的重叠导致识别x和y的关系变得异常困难。针对这种情况,R语言提供了一些解决办法。原创 2024-09-18 01:00:00 · 950 阅读 · 0 评论 -
R语言统计分析——散点图1(常规图)
本例中plot()函数用于绘制散点图,abline()函数用来添加最佳拟合的线性直线,lowess()函数则用来田间一条平滑曲线(该平滑曲线拟合是一种基于局部加权多项式回归的非参数方法)。car包中的scatterplot()函数增强了散点图的许多功能,它可以很方便地绘制散点图,并且能添加拟合曲线、边界箱线图和置信椭圆,还可以按子集绘图。R语言中创建散点图的基础函数是plot(x,y),其中,x和y是数值型向量,代表着图形中的(x,y)坐标点。参考资料:R语言实战【第2版】原创 2024-09-17 01:00:00 · 612 阅读 · 0 评论 -
python统计分析——直方图(sns.histplot)
当bins为文本时,表示作图时的分组策略,可用选项具体有:'auto', 'fd', 'doane','scott', 'stone', 'rice', 'sturges', 'sqrt'。(13)common_norm=True, 当分组数据作图,stat设置为‘percent’或‘density’时,如果设置为True,表示按整体进行汇总转换,当设置为False时,表示按各组自己的数据汇总转换。(16)fill=True, 用于设置条形图是否有填充,默认为True,下图为设置为False的展示。原创 2024-01-04 04:00:00 · 10912 阅读 · 0 评论 -
excel统计分析——Q-Q图
统计学家认为在抽样较少的情况下,抽样点按照分位数等概率间隔的出现是不合理的,实际情况应该是分布在两端的数据被抽到的概率非常小,中间抽到的概率比较高,于是给出了一些分位点位置的调整方案。Q-Q图全称Quantile-Quantile图,Q-Q图是用于评估两个数据集的分布相似程度的,若数据点分布在直线y=x附近,则两个数据集的分布类似。正态Q-Q图是Q-Q图的一种。普通Q-Q图与正态Q-Q图的不同点在于普通Q-Q图的横坐标是未知数据集的分位数,正态Q-Q图的横坐标是标准正态分布的分位数,其他步骤都一样。原创 2023-12-17 13:26:09 · 4402 阅读 · 0 评论