在一个二维01矩阵中找到全为1的最大正方形, 返回它的面积.
样例
样例 1:
输入:
[
[1, 0, 1, 0, 0],
[1, 0, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 0, 0, 1, 0]
]
输出: 4
样例 2:
输入:
[
[0, 0, 0],
[1, 1, 1]
]
输出: 1
解题思路:
动态规划。
设定状态: dp[i][j] 表示以(i, j)为右下顶点的最大全1矩阵的边长.
状态转移方程:
if matrix[i][j] == 0
dp[i][j] = 0
else // 此时为dp[i-1][j-1], dp[i-1][j], dp[i][j-1] 确定的区域的最大全1矩阵
dp[i][j] = min{dp[i-1][j-1], dp[i-1][j], dp[i][j-1]} + 1 // 得到此方程需要一定推导, 纸笔画一下
边界条件: if i == 0 or j == 0: dp[i][j] = matrix[i][j]
答案: max{dp[i][j]}^2
注意:由于状态转移方程在i>=1,j>=1的情况下有效,所以在求最大边长res时,需要考虑到若1都在边界条件下的情况,依然需要更新res
public class Solution {
/**
* @param matrix: a matrix of 0 and 1
* @return: an integer
*/
public int maxSquare(int[][] matrix) {
// write your code here
if(matrix == null || matrix.length == 0 || matrix[0].length == 0)
return 0;
int row = matrix.length;
int col = matrix[0].length;
int res = 0;
//dp[i][j] 表示以(i, j)为右下顶点的最大全1矩阵的边长.
int[][] dp = new int[row][col];
//边界条件
for(int i=0; i<row; i++){
dp[i][0] = matrix[i][0];
//为了解决只有这一列含1的情况
if(matrix[i][0] == 1)
res = 1;
}
for(int j=0; j<col; j++){
dp[0][j] = matrix[0][j];
//为了解决只有这一行含1的情况
if(matrix[0][j] == 1)
res = 1;
}
//递推式
for(int i=1; i<row; i++){
for(int j=1; j<col; j++){
if(matrix[i][j] == 1)
dp[i][j] = Math.min(dp[i-1][j], Math.min(dp[i][j-1], dp[i-1][j-1])) + 1;
res = Math.max(res, dp[i][j]);
}
}
return res*res;
}
}
二刷:为了避免边界讨论,可将matrix扩充左边一列与上边一行,使之matrix[i-1][j-1]与dp[i][j]对应。
public class Solution {
/**
* @param matrix: a matrix of 0 and 1
* @return: an integer
*/
public int maxSquare(int[][] matrix) {
// write your code here
int row = matrix.length;
int col = matrix[0].length;
int[][] dp = new int[row+1][col+1];
int res = 0;
for(int i=1; i<=row; i++){
for(int j=1; j<=col; j++){
if(matrix[i-1][j-1] == 1)
dp[i][j] = Math.min(Math.min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]) + 1;
res = Math.max(res, dp[i][j]);
}
}
return res*res;
}
}