【两次过】Lintcode 436. 最大正方形

45 篇文章 1 订阅
22 篇文章 0 订阅

在一个二维01矩阵中找到全为1的最大正方形, 返回它的面积.

样例

样例 1:

输入:
[
  [1, 0, 1, 0, 0],
  [1, 0, 1, 1, 1],
  [1, 1, 1, 1, 1],
  [1, 0, 0, 1, 0]
]
输出: 4

样例 2:

输入: 
[
  [0, 0, 0],
  [1, 1, 1]
]
输出: 1

解题思路:

动态规划。

设定状态: dp[i][j] 表示以(i, j)为右下顶点的最大全1矩阵的边长.

状态转移方程:

if matrix[i][j] == 0
	dp[i][j] = 0
else                 // 此时为dp[i-1][j-1], dp[i-1][j], dp[i][j-1] 确定的区域的最大全1矩阵
	dp[i][j] = min{dp[i-1][j-1], dp[i-1][j], dp[i][j-1]} + 1	// 得到此方程需要一定推导, 纸笔画一下

边界条件: if i == 0 or j == 0: dp[i][j] = matrix[i][j]

答案: max{dp[i][j]}^2

注意:由于状态转移方程在i>=1,j>=1的情况下有效,所以在求最大边长res时,需要考虑到若1都在边界条件下的情况,依然需要更新res

public class Solution {
    /**
     * @param matrix: a matrix of 0 and 1
     * @return: an integer
     */
    public int maxSquare(int[][] matrix) {
        // write your code here
        if(matrix == null || matrix.length == 0 || matrix[0].length == 0)
            return 0;
        
        int row = matrix.length;
        int col = matrix[0].length;
        int res = 0;
        
        //dp[i][j] 表示以(i, j)为右下顶点的最大全1矩阵的边长.
        int[][] dp = new int[row][col];
        
        //边界条件
        for(int i=0; i<row; i++){
            dp[i][0] = matrix[i][0];
            //为了解决只有这一列含1的情况
            if(matrix[i][0] == 1)
                res = 1;
        }
            
        for(int j=0; j<col; j++){
            dp[0][j] = matrix[0][j];
            //为了解决只有这一行含1的情况
            if(matrix[0][j] == 1)
                res = 1;
        }
        
        //递推式
        for(int i=1; i<row; i++){
            for(int j=1; j<col; j++){
                if(matrix[i][j] == 1)
                    dp[i][j] = Math.min(dp[i-1][j], Math.min(dp[i][j-1], dp[i-1][j-1])) + 1;
                    
                res = Math.max(res, dp[i][j]);
            }
        }
        
        return res*res;
    }
}

二刷:为了避免边界讨论,可将matrix扩充左边一列与上边一行,使之matrix[i-1][j-1]与dp[i][j]对应。

public class Solution {
    /**
     * @param matrix: a matrix of 0 and 1
     * @return: an integer
     */
    public int maxSquare(int[][] matrix) {
        // write your code here
        int row = matrix.length;
        int col = matrix[0].length;
        int[][] dp = new int[row+1][col+1];
        int res = 0;
        
        for(int i=1; i<=row; i++){
            for(int j=1; j<=col; j++){
                if(matrix[i-1][j-1] == 1)
                    dp[i][j] = Math.min(Math.min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]) + 1;
                res = Math.max(res, dp[i][j]);
            }
        }
        
        return res*res;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值