自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(29)
  • 资源 (1)
  • 收藏
  • 关注

原创 malplotlib绘图笔记

边框#轴信息plt.show()

2023-11-03 11:29:54 209

原创 Tensorflow学习笔记:Keras函数式API

主要基于官方指南整理而成,详细介绍Keras函数式API,主要有9个部分,基本常见问题都有涉及,文档略长,作了一定梳理,比官方文档查阅方便。。。

2020-10-05 20:40:01 738

原创 本地电脑远程使用服务器 jupyter notebook及主题更换

文章目录前言一、本地电脑远程使用服务器上的jupyter notebook二、jupyter notebook 更换主题总结前言本篇介绍如何在本地电脑远程使用服务器上的jupyter notebook,并且介绍如何更换jupyter notebook 的主题,使其看起来更漂亮。一、本地电脑远程使用服务器上的jupyter notebook本地电脑Windows系统,服务器Linux系统。 在服务器上下载安装annconda后,进行如下配置jupyter notebook.建立config

2020-09-19 17:53:07 377

原创 anaconda、tensorflow、pycharm安装详细记录

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、anaconda的下载和安装1. 下载2. 安装二、tensorflow的安装1. 安装2. 测试三、PyCharm的安装和简单使用1. 安装2. 简单使用总结前言本篇博客主要记录window系统下anaconda、tensorflow以及pycharm的安装和简单应用,为方便后续的使用。一、anaconda的下载和安装1. 下载anaconda官网:https://www.anaconda.com/produ

2020-09-11 21:11:21 390

原创 python绘图 matplotlab的基本概念

1. figure、subplot、axes、axis的区别 首先看官网图:![Parts of a Figure](https://matplotlib.org/1.5.1/_images/fig_map.png#pic_center)

2020-09-02 14:11:50 640

原创 tensorflow2.0学习笔记:模型的保存与载入

tensorflow2.0 模型的保存通过ModelCheckpoint保存模型,该方式只保存网络的一个参数(比如达到最好),不管其他的状态。通过saved_model保存模型的一种保存格式,可以把这个保存的模型直接交给用户来部署,而不需要给一个源代码或相关的信息。通过model.save保存模型,这种方法简单粗暴的,把模型所有的状态都保存起来。import matplotlib as mplimport matplotlib.pyplot as plt%matplotlib inline

2020-06-23 19:53:38 386

原创 tensorflow2.0学习笔记:TFRecord 数据处理

tfrecord 基础API介绍tfrecord 数据处理import matplotlib as mplimport matplotlib.pyplot as plt%matplotlib inlineimport numpy as npimport sklearnimport pandas as pdimport osimport sysimport timeimport tensorflow as tffrom tensorflow import kerasprint(.

2020-06-09 05:30:04 385

原创 tensorflow2.0学习笔记:tf.data 数据处理

tf.data API 介绍tf.data处理csv文件数据import matplotlib as mplimport matplotlib.pyplot as plt%matplotlib inlineimport numpy as npimport sklearnimport pandas as pdimport osimport sysimport timeimport tensorflow as tffrom tensorflow import kerasprint.

2020-06-09 05:18:31 557

原创 tensorflow2.0学习笔记:自定义求导

tensorflow2.0建立神经网络模型,tensorflow近似求导与keras.optimizers结合使用,实现自定义求导,使得模型训练更加灵活。tensorflow2.0学习笔记:应用tensorflow近似求导介绍tensorflow求导的基本用法。import matplotlib as mplimport matplotlib.pyplot as plt%matplotlib inlineimport numpy as npimport sklearnimport pandas

2020-05-26 06:46:45 306

原创 tensorflow2.0学习笔记:应用tensorflow近似求导

使用tensorflow近似求导,以及与Optimizer的结合使用,tensorflow2.0学习笔记:自定义求导介绍在神经网络训练中实现自定义求导。import matplotlib as mplimport matplotlib.pyplot as plt%matplotlib inlineimport numpy as npimport sklearnimport pandas as pdimport osimport sysimport timeimport tensorflo

2020-05-26 06:42:41 222

原创 tensorflow2.0学习笔记:tf.function 和 auto-graph

tf.function介绍:1.将python函数编译成图结构2.易于将模型导出成GraphDef+checkpoint或者SaveModel3.使得eager execution可以默认打开4.1.0的代码可以通过tf.function封装继续再2.0中使用:替代sessionimport matplotlib as mplimport matplotlib.pyplot as plt%matplotlib inlineimport numpy as npimport sklearn

2020-05-25 07:31:56 524 2

原创 tensorflow2.0学习笔记:自定义层

layers.Dense的使用方法:1.Sequence中的使用 layer = tf.keras.layers.Dense(100) layer = tf.keras.layers.Dense(100,input_shape = [None,5]) #第一层有一个输入,None表示样本数2. 函数式调用 layer(tf.zeros([10,5])) #输入(10,5),输出(10,100), layer.variables # x * w + b : w--kernel b--

2020-05-25 07:26:32 324

原创 tensorflow2.0学习笔记:自定义损失函数

import matplotlib as mplimport matplotlib.pyplot as plt%matplotlib inlineimport numpy as npimport sklearnimport pandas as pdimport osimport sysimport timeimport tensorflow as tffrom tensorflow import kerasprint(tf.__version__)from sklearn.dat

2020-05-25 07:20:53 395

原创 tensorflow2.0学习笔记:张量的定义和运算

tensorflow2.0 基础API,张量(常量、变量)的定义、运算和操作,字符串矩阵、不规则张量、稀疏张量的定义和运算。import matplotlib as mplimport matplotlib.pyplot as plt%matplotlib inlineimport numpy as npimport sklearnimport pandas as pdimport osimport sysimport timeimport tensorflow as tffrom

2020-05-25 07:11:00 711

原创 tensorflow2.0学习笔记: LSTM 文本数据生成

tensorflow2.0学习笔记: RNN 文本数据生成 详述了在莎士比亚数据集上,从数据处理到RNN实现的整个过程,但RNN的结果并不理想。本文通过LSTM,再次实现文本数据分类,结果比RNN较好。有关数据处理部分tensorflow2.0学习笔记: RNN 文本数据生成 中有详细注释,就整程序实现实现而言,RNN和LSTM仅在仅在建立模型中有稍微区别: keras.layers.SimpleRNN(units = rnn_units,return_sequences = True) 替换为 ke

2020-05-21 07:02:52 678

原创 tensorflow2.0学习笔记: RNN 文本数据生成

基于莎士比亚文本数据,实现循环神经网络(RNN)文本数据生成。import matplotlib as mplimport matplotlib.pyplot as plt%matplotlib inlineimport numpy as npimport sklearnimport pandas as pdimport osimport sysimport timeimport tensorflow as tffrom tensorflow import kerasprint(t

2020-05-21 06:48:20 576 1

原创 tensorflow2.0学习笔记: LSTM 长短期记忆模型

普通RNN的信息更不能长久传播(存在与理论上),LSTM引入选择性机制:选择性输出选择性输入选择性遗忘选择性通过-门-实现,门限机制:向量A是经过Sigmoid激活后的向量,包含的是概率值: 向量A = [0.1,0.9,0.4,0,0.6] <- (Sigmoid :f(x) = 1/(1+exp(-x))向量B是输入的信息向量: 向量B = [13.8,14,-7,-4,30]A为门限,B为信息A与B点乘(点积),对应元素相乘:A * B = [0.138,..

2020-05-20 08:26:31 611

原创 tensorflow2.0学习笔记: RNN 循环神经网络

基于IMDB数据实现文本情感分类循环神经网络:简单的RNN:keras.layers.SimpleRNN()双向RNN: keras.layers.Bidirectional(keras.layers.SimpleRNN())import matplotlib as mplimport matplotlib.pyplot as plt%matplotlib inlineimport numpy as npimport sklearnimport pandas as pdimport o

2020-05-19 08:01:19 605

原创 tensorflow2.0学习笔记:embedding_padding_pooling

对于序列数据的处理,首先要进行编码(Embedding),然后还需处理其不等长的问题(变长输入问题)。1.Embeddinga. One-hot编码:word -> index \[0,0,...,1,0,...](稀疏) b. (Dense) Embedding:Word -> \[1.2,2.4,..,0.2,...](密集)2.变长输入a.padding word index:\[3,2,5,1] -> padding: \[3,2,5,1,0,0,...](补

2020-05-19 07:49:48 911 1

原创 tensorflow2.0学习笔记:深度可分离卷积

深度可分离卷积本质上是一种分支网络结构,分支网络结构有以下好处:a.可提供不同的视野域b.提升效率深度可分离卷积使用通道分支,能够减少参数提高计算效率,但同时也会造成梯度损失。深度可分离卷积由于其训练参数小的特点可以在手机上实现。import matplotlib as mplimport matplotlib.pyplot as plt%matplotlib inlineimport numpy as npimport sklearnimport pandas as pdimpor.

2020-05-18 07:30:35 399

原创 tensorflow2.0学习笔记:卷积神经网络(CNN)

1. 卷积神经网络a.(卷积层 + 池化层(可选)) * N + 全连接层 * Mb.分类任务(主要用于图像识别)、回归任务2. 全卷积神经网络a.(卷积层 + 池化层(可选)) * N + 反卷积层 * Mb.物体分割(全卷积神经网络输入和输出一样大)3. 卷积操作a.局部连接:对于图像问题,存在很强的区域性,相近的像素值相近b.参数共享:图像特征和位置无关c.输出size = 输入size - 卷积核size + 1, (从左到右,从上到下滑动卷积核,点积运算)4. 池化操作(一般

2020-05-18 07:21:16 484

原创 tensorflow2.0学习笔记:超参数搜索

超参数:神经网络训练过程中不变的参数网络结构参数:层数、每层宽度(神经单元个数)、每层的激活函数等训练参数:batch_size,学习率(Alpha),学习率的变化策略等人力调试成本大 --> 超参数搜索常见的超参数搜索方法:(1) 网格搜索:超参数离散化-->超参数组合-->一组一组(可并行)(2) 随机搜索:随机生成参数组合(3) 遗传算法搜索: (a) 初始化参数集合 -> 训练 -> 得到模型指标作为生存概率 (b) 选择

2020-05-17 06:58:51 472 1

原创 tensorflow2.0学习笔记:多输入多输出

多输入,对于一个wide and deep 模型,通常考虑输入不同的特征。( tensorflow2.0学习笔记:wide and deep 模型)多输出,通常用于实现不同的任务。import matplotlib as mplimport matplotlib.pyplot as plt%matplotlib inlineimport numpy as npimport sklearnimport pandas as pdimport osimport sysimport time.

2020-05-16 08:29:44 7772 4

原创 tensorflow2.0学习笔记:wide and deep 模型

wide and deep 模型,谷歌16年发布,用于回归和分类。稀疏特征:离散值–>One-hot编码,比如词表。可叉乘,类似笛卡尔乘积(组合)。密集特征:向量表达,可计算距离。 Word2vec,带有语义信息,兼容没出现过的特征。wide model 与 deep model 的结合,从下(输入层)往上(输出层)看,左边输入通过wide model , 右边输入通过 deep model , 之后拼接,输出。左边可以输入密集特征,右边可以是稀疏特征,这也是wide and deep 的优势

2020-05-16 07:29:03 1212

原创 tensorflow2.0学习笔记:神经网络

mnist数据集分类:深度神经网络在网络中,激活函数、批归一化、Dropout的添加和使用。import matplotlib as mplimport matplotlib.pyplot as plt%matplotlib inlineimport numpy as npimport sklearnimport pandas as pdimport osimport tensorflow as tffrom tensorflow import kerasprint(tf.__ver

2020-05-09 10:10:04 174

原创 tensorflow2.0学习笔记:简单的回归模型

california_housing:数据集,实现简单的回归模型。数据集:from sklearn.datasets import fetch_california_housingimport matplotlib as mplimport matplotlib.pyplot as plt%matplotlib inlineimport numpy as npimport sklear...

2020-05-08 07:03:33 199

原创 tensorflow2.0学习笔记:回调函数(callbacks)

callbacks:回调函数,显示或者控制模型训练过程中的一些信息或者参数。EarlyStopping:当梯度下降速度慢的时候,提前终止训练ModelCheckpoint:保存模型Tensorboard:训练过程可视化工具import matplotlib as mplimport matplotlib.pyplot as plt%matplotlib inlineimport nu...

2020-05-07 07:50:03 1760

原创 tensorflow2.0学习笔记:数据标准化

深度学习中图片数据一般需要归一化,或者标准化。应用sklearn中数据标准化方法可以简化处理过程。import matplotlib as mplimport matplotlib.pyplot as plt%matplotlib inlineimport numpy as npimport sklearnimport pandas as pdimport tensorflow a...

2020-05-06 08:14:23 2037 1

原创 tensorflow2.0学习笔记:简单分类模型实现

tensorflow2.0 实现最简单的分类模型import matplotlib as mplimport matplotlib.pyplot as plt%matplotlib inlineimport numpy as npimport tensorflow as tfimport pandas as pdfrom tensorflow import kerasprint(...

2020-05-05 10:07:25 537

shakespeare.txt

shakespeare txt, 莎士比亚文本数据,用于实现文本数据生成的数据集。 tensorflow2.0学习笔记: RNN文本数据生成 tensorflow2.0学习笔记: LSTM 文本数据生成

2020-05-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除