答案只可能是把初始的分成几坨,分别把每坨合到一起再拆开。
设
f[i][j]
表示初始时的集合i组成结束时的集合j最小需要的步数。
保证初始时集合i中的元素和等于集合j中的元素和。
f[i][j]=min(f[i][j],f[k][t]+f[i−k][j−t])
复杂度
O(3n+m)
,由于满足集合i中的元素和等于集合j中的元素和的情况很少,因此跑得很快。
#include <bits/stdc++.h>
using namespace std;
#define N (1<<10)+10
int n1,n2;
int a[11],b[11];
int sum1[N],sum2[N],num[N];
int f[N][N];
int main()
{
//freopen("tt.in","r",stdin);
scanf("%d",&n1);
for(int i=1;i<=n1;i++)
scanf("%d",&a[i]);
scanf("%d",&n2);
for(int i=1;i<=n2;i++)
scanf("%d",&b[i]);
for(int i=1;i<1<<n1;i++)
for(int j=0;j<n1;j++)
if(i>>j&1)sum1[i]+=a[j+1];
for(int i=1;i<1<<n2;i++)
for(int j=0;j<n2;j++)
if(i>>j&1)sum2[i]+=b[j+1];
for(int i=1;i<1<<10;i++)
num[i]=num[i-(i&-i)]+1;
memset(f,0x3f,sizeof(f));
for(int i=1;i<1<<n1;i++)
for(int j=1;j<1<<n2;j++)
if(sum1[i]==sum2[j])
{
f[i][j]=num[i]+num[j]-2;
for(int k=i&(i-1);k;k=i&(k-1))
for(int t=j&(j-1);t;t=j&(t-1))
if(sum1[k]==sum2[t])
f[i][j]=min(f[i][j],f[k][t]+f[i-k][j-t]);
}
printf("%d\n",f[(1<<n1)-1][(1<<n2)-1]);
return 0;
}