bzoj 2064 分裂 状压dp

答案只可能是把初始的分成几坨,分别把每坨合到一起再拆开。
f[i][j] 表示初始时的集合i组成结束时的集合j最小需要的步数。
保证初始时集合i中的元素和等于集合j中的元素和。
f[i][j]=min(f[i][j],f[k][t]+f[ik][jt])
复杂度 O(3n+m) ,由于满足集合i中的元素和等于集合j中的元素和的情况很少,因此跑得很快。

#include <bits/stdc++.h>
using namespace std;
#define N (1<<10)+10
int n1,n2;
int a[11],b[11];
int sum1[N],sum2[N],num[N];
int f[N][N];
int main()
{
    //freopen("tt.in","r",stdin);
    scanf("%d",&n1);
    for(int i=1;i<=n1;i++)
        scanf("%d",&a[i]);
    scanf("%d",&n2);
    for(int i=1;i<=n2;i++)
        scanf("%d",&b[i]);

    for(int i=1;i<1<<n1;i++)
        for(int j=0;j<n1;j++)
            if(i>>j&1)sum1[i]+=a[j+1];

    for(int i=1;i<1<<n2;i++)
        for(int j=0;j<n2;j++)
            if(i>>j&1)sum2[i]+=b[j+1];

    for(int i=1;i<1<<10;i++)
        num[i]=num[i-(i&-i)]+1;

    memset(f,0x3f,sizeof(f));
    for(int i=1;i<1<<n1;i++)
        for(int j=1;j<1<<n2;j++)
            if(sum1[i]==sum2[j])
            {
                f[i][j]=num[i]+num[j]-2;
                for(int k=i&(i-1);k;k=i&(k-1))
                    for(int t=j&(j-1);t;t=j&(t-1))
                        if(sum1[k]==sum2[t])
                            f[i][j]=min(f[i][j],f[k][t]+f[i-k][j-t]);
            }
    printf("%d\n",f[(1<<n1)-1][(1<<n2)-1]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值