bzoj 3572 [Hnoi2014]世界树 虚树 dp

本文介绍了如何构建虚树并利用DFS维护子树中和整棵树中最近选中点的信息。在虚树的每条边上,非虚树点及其子树只能选择两端虚树点的g[x]。通过倍增算法计算链上点子树大小之和,最终针对每个虚树点单独计算解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先建出虚树(似乎虚树可以不写重新标号)
dfs两次维护 f[x] 在x的子树中距x最近的选中的点, g[x] 整棵树中距x最近的选中的点。
考虑虚树中的每一条边,这条边上的所有不在虚树上的点以及他的子树只能选这条边两端的虚树上的点的 g[x]
这里写图片描述
求出分界位置。对于求一条链上点的子树的大小之和,可以倍增维护一个点到祖先的size之和,假设求链fa[x]到fa[y]上点的子树之和(fa[y]是fa[x]的祖先),就是(fa[x]到fa[y]的size和)-(x到y的size和)。
再对于每个虚树上的点单独计算就好了。
(语文太渣,可以看代码。。。)

#include <bits/stdc++.h>
using namespace std;
#define inf 1e9
#define N 310000
#define MP make_pair
#define PA pair<int,int>
#define AD(x,y) MP(x.first+y,x.second)
int n,tot,cnt,Q,top,tim;
int head[N],nex[N<<1],to[N<<1],pos[N],a[N],b[N];
int st[N],deep[N],bel[N],num[N],bj[N],ans[N];
int fa[N][21],sum[N][21];
vector<int>vec[N];
PA f[N],g[N];
void add(int x,int y)
{
    tot++;
    nex[tot]=head[x];head[x]=tot;
    to[tot]=y;
}
void dfs(int x,int y)
{
    pos[x]=++cnt;deep[x]=deep[y]+1;
    sum[x][0]=1;fa[x][0]=y;
    for(int i=head[x];i;i=nex[i])
        if(to[i]!=y)
        {
            dfs(to[i],x);
            sum[x][0]+=sum[to[i]][0];
        }
}
int cmp(int x,int y){return pos[x]<pos[y];}
int lca(int x,int y)
{
    if(deep[x]<deep[y])swap(x,y);
    for(int i=20;i>=0;i--)
        if(deep[fa[x][i]]>=deep[y])
            x=fa[x][i];
    if(x==y)return x;
    for(int i=20;i>=0;i--)
        if(fa[x][i]!=fa[y][i])
            x=fa[x][i],y=fa[y][i];
    return fa[x][0];
}
void dfs1(int x)
{
    f[x]=MP(inf,0);
    if(bj[bel[x]]==tim)f[x]=MP(0,bel[x]);
    for(int i=0,t;i<vec[x].size();i++)
    {
        dfs1(t=vec[x][i]);
        f[x]=min(f[x],AD(f[t],deep[bel[t]]-deep[bel[x]]));
    }
}
PA up(int x,int y)
{
    int ret=0;
    for(int i=20;i>=0;i--)
        if(y>>i&1)
            ret+=sum[x][i],x=fa[x][i];
    return MP(ret,x);
}
int move(int x,int y)
{
    for(int i=20;i>=0;i--)
        if(deep[fa[x][i]]>deep[y])
            x=fa[x][i];
    return x;
}
int cal(int x,int y)
{
    PA v1=up(x,y),v2=up(fa[x][0],y);
    return v2.first-v1.first;
}
void dfs2(int x)
{   
    ans[g[x].second]+=sum[bel[x]][0];
    for(int i=0,t;i<vec[x].size();i++)
    {
        ans[g[x].second]-=sum[move(bel[t=vec[x][i]],bel[x])][0];
        g[t]=min(f[t],AD(g[x],deep[bel[t]]-deep[bel[x]]));
        dfs2(t);
        int v1=g[t].first-g[x].first,v2=deep[bel[t]]-deep[bel[x]],p1,p2;
        if(v1+v2<=1)p1=0;
        else if((v1+v2)&1)p1=(v1+v2)/2;
        else p1= g[x].second<g[t].second ? (v1+v2)/2 : (v1+v2)/2-1;
        p1=max(p1,0);p1=min(p1,v2-1);p2=v2-1-p1;
        int pos=up(bel[t],p2).second;
        if(p1)ans[g[x].second]+=cal(pos,p1);
        if(p2)ans[g[t].second]+=cal(bel[t],p2);
    }
}
int main()
{
    //freopen("tt.in","r",stdin);
    scanf("%d",&n);
    for(int i=1,x,y;i<n;i++)
    {
        scanf("%d%d",&x,&y);
        add(x,y);add(y,x);
    }
    dfs(1,0);
    for(int i=1;i<=20;i++)
        for(int j=1;j<=n;j++)
        {
            fa[j][i]=fa[fa[j][i-1]][i-1];
            sum[j][i]=sum[j][i-1]+sum[fa[j][i-1]][i-1];
        }
    scanf("%d",&Q);
    for(int m;Q--;)
    {
        scanf("%d",&m);tim++;
        for(int i=1;i<=m;i++)
        {
            scanf("%d",&a[i]),bj[a[i]]=tim;
            b[i]=a[i];ans[b[i]]=0;
        }
        sort(a+1,a+1+m,cmp);
        st[top=1]=1;vec[1].clear();
        num[1]=1;bel[cnt=1]=1;
        for(int i=1;i<=m;i++)
        {
            int t;
            while((t=lca(st[top],a[i]))!=st[top])
            {
                if(deep[st[top-1]]<deep[t])
                {
                    num[t]=++cnt;bel[cnt]=t;
                    vec[cnt].clear();
                    vec[cnt].push_back(num[st[top]]);
                    st[top]=t;
                }
                else vec[num[st[top-1]]].push_back(num[st[top]]),top--;
            }
            if(st[top]!=a[i])
            {
                st[++top]=a[i];
                num[a[i]]=++cnt;bel[cnt]=a[i];
                vec[cnt].clear();
            }
        }
        for(int i=top;i>1;i--)
            vec[num[st[i-1]]].push_back(num[st[i]]);
        dfs1(1);
        g[1]=f[1];dfs2(1);
        for(int i=1;i<=m;i++)
            printf("%d ",ans[b[i]]);
        puts("");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值