bzoj 4145 [AMPPZ2014]The Prices dp

本文介绍了一种购物路径优化算法,通过动态规划实现最小花费购买所有商品的目标。算法使用f[i][j]记录前i个商店购买集合j的商品的最小花费,g[i][j]记录在第i个商店购买集合j的商品的最小花费(包括路费)。核心思想是在每种商品集合中只选择一个最优商店进行转移。
摘要由CSDN通过智能技术生成

f[i][j] 表示前i个商店买了j集合的物品的最小花费。
g[i][j] 表示第i个商店的买了j集合的物品的最小花费(含路费)。
注意到如果 g[i][x]g[j][x] 那么去i买x的物品一定不比去j买x的物品差。
因此对于一种物品集合只需要有一个商店转移时转移这个集合就行。
复杂度 O(n2m+3m)
其实也可以直接背包。。。

#include <bits/stdc++.h>
using namespace std;
#define N 110
#define M (1<<16)+10
int n,m;
int d[N],c[N][21],pos[M];
int g[N][M],f[N][M];
int main()
{
    //freopen("tt.in","r",stdin);
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&d[i]);
        for(int j=1;j<=m;j++)scanf("%d",&c[i][j]);
        for(int j=1;j<1<<m;j++)
        {
            g[i][j]=d[i];
            for(int k=0;k<m;k++)
                if(j>>k&1)g[i][j]+=c[i][k+1];
            if(!pos[j]||g[i][j]<g[pos[j]][j])
                pos[j]=i;
        }
    }
    memset(f,0x3f,sizeof(f));f[0][0]=0;
    for(int i=1;i<=n;i++)
    {
        for(int j=0;j<1<<m;j++)
            f[i][j]=f[i-1][j];
        for(int j=1;j<1<<m;j++)
            if(pos[j]==i)
            {
                int t=(1<<m)-1-j;
                for(int k=t;;k=t&(k-1))
                {
                    f[i][j+k]=min(f[i][j+k],f[i-1][k]+g[i][j]);
                    if(!k)break;
                }
            }
    }
    printf("%d\n",f[n][(1<<m)-1]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值