题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5592
题意:给出每个前缀区间的逆序对数,要求你还原这个排列(1~n)。
输入样例
3 0 1 2
输出样例
3 1 2解法:从后往前还原,将每一个逆序数减去他前一个逆序数,即可得到这一位数字在没确定的数字中是第几大的。现在问题就转化为求一些数中第k大的数字并删除这个数。
赛中用vector直接模拟把小样例过了,system judge时TLE,查了一下才知道vector中删除操作复杂度很大。
一个正确解法是使用树状数组,初始时将1~n全部标记为1,当要删除一个数时就把他标记为0,查询时用树状数组的log(n)求前缀和的功能,再二分查找前缀和为k的点就可以实现查找当前第k大数的功能了。在二分查找时需要注意,由于查的是前缀和,有可能查到已经标记为0的点,在实现二分时要注意考虑。
还可以用线段树实现的求前缀和,看别人代码发现貌似还有不用二分的解法,这里留个坑,需要再研究一下。
树状数组+二分代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <vector>
#include <set>
#include <map>
#include <stack>
#include <queue>
using namespace std;
int C[50005],mem[50005];
int n;
int lowbit(int x){
return x&-x;
}
int sum(int x){
int ret=0;
while(x>0){
ret+=C[x];
x-=lowbit(x);
}
return ret;
}
void add(int x,int d){
while(x<=n){
C[x]+=d;
x+=lowbit(x);
}
}
int query(int l,int r,int k){
if(l==r) return r;
int mid=(l+r)/2;
if(sum(mid)<k)
return query(mid+1,r,k);
else
return query(l,mid,k);
}
int main (){
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
memset(C,0,sizeof(C));
for(int i=1;i<=n;i++){
add(i,1);
scanf("%d",&mem[i]);
}
for(int i=n;i>=1;i--){
int k;
if(i!=1)
k=i-(mem[i]-mem[i-1]);
else
k=1;
mem[i]=query(1,n,k);
add(mem[i],-1);
}
for(int i=1;i<n;i++)
printf("%d ",mem[i]);
printf("%d\n",mem[n]);
}
return 0;
}