链表中环的入口节点

链表中环的入口节点

描述

链表中环的入口节点
给一个长度为n链表,若其中包含环,请找出该链表的环的入口结点,否则,返回null。

数据范围: n≤10000, 1<=结点值<=10000
要求:空间复杂度 O(1),时间复杂度 O(n)

解法一

解法一:有环的链表,在遍历时会在环中一直循环,想要获得环的入口结点,
直观地想,可以使用hash法保存出现的结点,当重复环的遍历过程时,第一次碰到重复的结点即为环入口结点B。

解法二

解法二:通过定义slow和fast指针,slow每走一步,fast走两步,若是有环,则一定会在环的某个结点处相遇(slow == fast),
根据下图分析计算,C为fast和slow指针第一次相遇的点。可知从C到B与从A到B以相同速度走第一次相遇的节点一定为B,即为入口点。解法二的实现,如下。
在这里插入图片描述

代码实现

public class Node<V> {

    public Node<V> pre;

    public Node<V> next;
    private V v;

    public Node(V v) {
        this.v = v;
    }

    public V getV() {
        return v;
    }

    public void setV(V v) {
        this.v = v;
    }
}
public static Node<Integer> entryNodeOfLoop(Node<Integer> head) {
    if (head == null || head.next == null){
        return null;
    }
    Node<Integer> fast = head;
    Node<Integer> slow = head;

    while (fast !=null && fast.next !=null){
        fast = fast.next.next;
        slow = slow.next;
        if (slow == fast){
            break;
        }
    }
    // 若是快指针指向null,则不存在环
    if(fast == null || fast.next == null)
        return null;
    // 重新指向链表头部
    fast = head;
    while (fast !=slow){
        fast = fast.next;
        slow = slow.next;
    }
    return fast;
}

从C到B与从A到B以相同速度走第一次相遇的节点一定为B?

在这里插入图片描述
我们用数学的方式证明一下。

如果结论:A到B走和C到B顺时针相同速度走,第一次相遇的点一定为B点。成立
那么数学表达式有 X = n(Y+Z)+Z  n>=0,n为环的圈数;的结论成立

为证明A到B走和C到B顺时针相同速度走,第一次相遇的点一定为B点
即证明:X = n(Y+Z)+Z  n>=0;n为环的圈数

由第一次相遇在C点得:
                2(X+Y) = X + w(Y+Z) + Y;(w>=1,w为环的圈数)
推导:
       ==>  2(X+Y) = X + w(Y+Z) + Y + Z + Y;(w>=0,w为环的圈数)
       ==>  2(X+Y) = X + w(Y+Z) + 2Y + Z;(w>=0,w为环的圈数)
       ==>          X  = w(Y+Z) +Z ;(w>=0,w为环的圈数)
      
所以:X = n(Y+Z)+Z  n>=0;n为环的圈数。成立

即:A到B走和C到B顺时针相同速度走,第一次相遇的点一定为B点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风吹千里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值