1.计算m*2^n次方(如计算3X8==3<<3)
2.判断一个数n的奇偶性
a&1 = 0 偶数
a&1 = 1 奇数
n&1==1?“奇数”:“偶数”
为什么与1能判断奇偶?所谓的二进制就是满2进1,那么好了,偶数的最低位肯定是0(恰好满2,对不对?),同理,奇数的最低位肯定是1.int类型的1,前31位都是0,无论是1&0还是0&0结果都是0,那么有区别的就是1的最低位上的1了,若n的二进制最低位是1(奇数)与上1,结果为1,反则结果为0.
3.不用临时变量交换两个数
a = a^b;
b = b^a;
a = a^b;
4.取绝对值
(a^(a>>31))-(a>>31)
先整理一下使用位运算取绝对值的思路:若a为正数,则不变,需要用异或0保持的特点;若a为负数,则其补码为源码翻转每一位后+1,先求其源码,补码-1后再翻转每一位,此时需要使用异或1具有翻转的特点。任何正数右移31后只剩符号位0,最终结果为0,任何负数右移31后也只剩符号位1,溢出的31位截断,空出的31位补符号位1,最终结果为-1.右移31操作可以取得任何整数的符号位。那么综合上面的步骤,可得到公式。a>>31取得a的符号,若a为正数,a>>31等于0,a^0=a,不变;若a为负数,a>>31等于-1 ,a-1(a0xFFFFFFFF)翻转每一位.
5.取int型变量a的第k位 (k=0,1,2……sizeof(int))。
a>>k&1
6.将int型变量a的第k位清0。即a=a&~(1<< k)
7.将int型变量a的第k位置1,即a=a ¦(1<< k)
使用场景:
上述5.6.7的使用场景有bitmap
8.int型变量循环左移k次,即a=a << k ¦a>>16-k (设sizeof(int)=16)
9.int型变量a循环右移k次,即a=a>> k ¦a < <16-k (设sizeof(int)=16)
10.整数的平均值
对于两个整数x,y,假设用 (x+y)/2 求平均值。会产生溢出。由于 x+y 可能会大于INT_MAX,可是我们知道它们的平均值是肯定不会溢出的。我们用例如以下算法:
int average(int x, int y) //返回X,Y 的平均值
{
return (x&y)+((x^y)>>1);
}
11.推断一个整数是不是2的幂,对于一个数 x >= 0,推断他是不是2的幂
boolean power2(int x)
{
return ((x&(x-1))==0)&&(x!=0)。
}
12.取模运算转化成位运算 (在不产生溢出的情况下)
a % (2^n) 等价于 a & (2^n - 1)
13.乘法运算转化成位运算 (在不产生溢出的情况下)
a * (2^n) 等价于 a < < n
14.除法运算转化成位运算 (在不产生溢出的情况下)
a / (2^n) 等价于 a>> n
例: 12/8 == 12>>3
15.a % 2 等价于 a & 1
16.
假设现在参数X的取值只可能a,b两个数,现在的实现逻辑是,如果x==b时,则把b的值赋给X;如果x==b时,则把a的值赋给X。
第一种:
if (x == a){
x= b;
}else{
x= a;
}
第二种
x= a ^ b ^ x;
这种替换有限制的:
x只可能等于a,b两个数之间选择,如果x有第三种取值情况,上述等价替换不成立则不成立。
17.x 的 相反数 表示为 (~x+1)