MapReduce练习案例1-统计求和

更多大数据专栏文章请点击 : –> 小马哥大数据专栏博文导航 <–

MapReduce案例

案例1: 统计求和

1.1 需求

统计每个手机号的上行数据包总和,下行数据包总和,上行总流量之和,下行总流量之和分析:以手机号码作为key值,上行流量,下行流量,上行总流量,下行总流量四个字段作为value值,然后以这个key,和value作为map阶段的输出,reduce阶段的输入.

数据格式如下:
在这里插入图片描述

1.2 思路

​ 1, map输出:

​ key: 手机号码msisdn

​ value: 原始line

​ 2, reduce输出:

​ key: 手机号码msisdn

​ value: 对四个字段 upPackNum, downPackNum, upPayLoad, downPayLoad累计求和

1.3 代码

JavaBean类
import org.apache.hadoop.io.WritableComparable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

/**
 * 代表流量记录的JavaBean
 */
public class Flow implements WritableComparable<Flow> {
   
    private String phoneNum;    //手机号码
    private Long upPackNum;     //上行数据包数量
    private Long downPackNum;   //下行数据包数量
    private Long upPayLoad;     //上行总流量
    private Long downPayLoad;   //下行总流量
    private Long totalUpPackNum;     //上行数据包数量_总和
    private Long totalDownPackNum;   //下行数据包数量_总和
    private Long totalUpPayLoad;     //上行总流量_总和
    private Long totalDownPayLoad;   //下行总流量_总和

    public Flow() {
   
    }

    public Flow(Long totalUpPackNum, Long totalDownPackNum, Long totalUpPayLoad, Long totalDownPayLoad) {
   
        this.totalUpPackNum = totalUpPackNum;
        this.totalDownPackNum = totalDownPackNum;
        this.totalUpPayLoad = totalUpPayLoad;
        this.totalDownPayLoad = totalDownPayLoad;
    }

    public String getPhoneNum() {
   
        return phoneNum;
    }
// ... 省略getter与setter方法

    @Override
    public String toString() {
   
        return totalUpPackNum +
                "\t" + totalDownPackNum +
                "\t" + totalUpPayLoad +
                "\t" 
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

能力工场小马哥

如果对您有帮助, 请打赏支持~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值