kafka+ss create stream

10 篇文章 0 订阅
createStream 只有一个executors 分多个(可配置)receiver 从kafka 拉数据,然后分发给其他executor执行。 这点通过thread dump得到论证。
createDirectStream 每个executors都会从Kafka拉数据,每个executor 从kafka的一个分区拉数据。这点通过在kafka单个节点上执行iftop -n -i em1可以看到。thread dump中没发现。


createStream==========================================================================================
SparkConf sparkConf = new SparkConf().setAppName(sparkAppName).setMaster(master);
JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, Durations.seconds(duration));
Map<String, String> kafkaParams = new HashMap<String, String>();
kafkaParams.put("group.id", groupId);
kafkaParams.put("metadata.broker.list", metadataBrokerList);
kafkaParams.put("auto.offset.reset", autoOffsetReset);


Map<String, Integer> topicMap = new HashMap<String, Integer>();
String[] topicsArr = topicStr.split(",");
int n = topicsArr.length;
for (int i = 0; i < n; i++) {
topicMap.put(topicsArr[i], ConfigMgr.getIntByKey("spark.thread.num"));
}


JavaPairReceiverInputDStream<String, String> lines = KafkaUtils.createStream(jssc, zookeeper,
ConfigMgr.getKakfaGroupId(), topicMap);


VoidFunction<JavaPairRDD<String, String>> func = new VoidFunction<JavaPairRDD<String, String>>() {
private static final long serialVersionUID = -7821297251721419326L;


private Logger logger = LoggerFactory.getLogger(VoidFunction.class);


@Override
public void call(JavaPairRDD<String, String> arg0) throws Exception {
try {


arg0.foreach(new VoidFunction<Tuple2<String, String>>() {


private static final long serialVersionUID = -8745159565584246451L;


@Override
public void call(Tuple2<String, String> arg0) throws Exception {
try {
execute(arg0._2);
} catch (Exception e) {
logger.error(e.getMessage(), e);
}
}
});
} catch (Exception e) {
logger.error(e.getMessage(), e);
}
}


};


lines.foreachRDD(func);


jssc.start();
jssc.awaitTermination();




createDirectStream==========================================================================================
SparkConf sparkConf = new SparkConf().setAppName(sparkAppName).setMaster(master);
JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, Durations.seconds(duration));


Set<String> topicSet = new HashSet<String>();
for (String topic : topicStr.split(",")) {
topicSet.add(topic);
}


Map<String, String> kafkaParams = new HashMap<String, String>();
kafkaParams.put("group.id", groupId);
kafkaParams.put("metadata.broker.list", metadataBrokerList);
kafkaParams.put("auto.offset.reset", autoOffsetReset);


JavaPairInputDStream<String, String> pairInput = KafkaUtils.createDirectStream(jssc, String.class, String.class,
StringDecoder.class, StringDecoder.class, kafkaParams, topicSet);


VoidFunction<JavaPairRDD<String, String>> func = new VoidFunction<JavaPairRDD<String, String>>() {
private static final long serialVersionUID = -7821297251721419326L;


private Logger logger = LoggerFactory.getLogger(VoidFunction.class);


@Override
public void call(JavaPairRDD<String, String> arg0) throws Exception {
try {
arg0.foreach(new VoidFunction<Tuple2<String, String>>() {


private static final long serialVersionUID = -8745159565584246451L;


@Override
public void call(Tuple2<String, String> arg0) throws Exception {
try {
System.out.println(arg0._2);
} catch (Exception e) {
logger.error(e.getMessage(), e);
}
}
});
} catch (Exception e) {
logger.error(e.getMessage(), e);
}
}
};


pairInput.foreachRDD(func);


jssc.start();
jssc.awaitTermination();

createDirectStream + custom offset==========================================================================================
SparkConf sparkConf = new SparkConf().setAppName(sparkAppName).setMaster(master);
JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, Durations.seconds(duration));


Set<String> topicSet = new HashSet<String>();
for (String topic : topicStr.split(",")) {
topicSet.add(topic);
}


Map<String, String> kafkaParams = new HashMap<String, String>();
kafkaParams.put("group.id", groupId);
kafkaParams.put("metadata.broker.list", metadataBrokerList);
kafkaParams.put("auto.offset.reset", autoOffsetReset);


long[] off = new long[] { 3316538, 2767422, 3332371, 3330540, 3863203, 3315774, 3867953, 3328188, 3325543,
3892565 };


Map<TopicAndPartition, Long> fromOffsets = new HashMap<TopicAndPartition, Long>();
for (int i = 0; i < 10; i++) {
fromOffsets.put(new TopicAndPartition(topicStr, i), off[i]);
}


JavaInputDStream<String> jid = KafkaUtils.createDirectStream(jssc, String.class, String.class,
StringDecoder.class, StringDecoder.class, String.class, kafkaParams, fromOffsets,
new Function<kafka.message.MessageAndMetadata<String, String>, String>() {


private static final long serialVersionUID = -6590667828252772663L;


@Override
public String call(MessageAndMetadata<String, String> arg0) throws Exception {
return arg0.message();
}


});


final VoidFunction<String> func0 = new VoidFunction<String>() {


private static final long serialVersionUID = -2520206838533422786L;


@Override
public void call(String arg0) throws Exception {
tugBoat.execute(JSONObject.parseObject(arg0));
}


};


VoidFunction<JavaRDD<String>> func = new VoidFunction<JavaRDD<String>>() {
private static final long serialVersionUID = 7679681553001908774L;


@Override
public void call(JavaRDD<String> arg0) throws Exception {
arg0.foreach(func0);
}


};


jid.foreachRDD(func);


jssc.start();
jssc.awaitTermination();
### 回答1: flume是一个数据采集工具,可以将数据从不同的数据源采集到kafka中。kafka是一个分布式消息队列,可以将数据进行缓存和分发。sparkstream是一个流处理框架,可以对实时数据进行处理和分析。hbase是一个分布式的NoSQL数据库,可以存储海量的结构化数据。mysql是一个关系型数据库,可以存储结构化数据。hive是一个数据仓库工具,可以将结构化数据进行查询和分析。 在这个架构中,flume将数据采集到kafka中,sparkstreamkafka中读取数据进行实时处理和分析,处理后的数据可以存储到hbase中。同时,mysql可以作为一个数据源,将数据导入到hive中进行分析。hbase和hive之间可以通过HBaseStorageHandler实现映射,将hbase中的数据映射到hive中进行查询和分析。 ### 回答2: Flume、Kafka、Spark Streaming、HBase、MySQL和Hive都是大数据处理和分析中常见的工具和技术。这些工具和技术可以协同工作以实现更高效、更精确的数据分析和处理。下面将从多角度分析这些工具之间的映射关系。 1. 数据采集和传输 Flume和Kafka是主要的数据采集和传输工具。Flume通常用于将数据从不同来源采集到HDFS或HBase等目标位置。Kafka则更适用于构建大规模的分布式消息流平台。Kafka可以接收来自多个来源的数据,然后在进行处理之前将其传输到队列中。这些工具都可以与HBase和MySQL等数据存储系统合作使用。 2. 实时数据处理 Spark Streaming则是实时数据处理和分析的主要技术。Spark Streaming可以将Kafka、Flume和其他来源的数据进行实时处理和分析,可以将结果直接存储到HBase或MySQL中。 3. 数据存储 MySQL和Hive是两个不同的SQL引擎。MySQL可以作为一种关系型数据库管理系统(RDBMS),可以在大多数情况下有效地存储结构化数据。Hive则可以将数据存储在Hadoop集群的HDFS中,并生成一个结构化查询语言(SQL)接口,允许开发人员和数据科学家方便地访问Hadoop中的数据。因此,Hive更适合非结构化或半结构化数据存储。 HBase则可以作为一个高性能、分布式的NoSQL数据库,专门用于在Hadoop集群上存储大数据和实时数据。因此,HBase比MySQL更适合存储半结构化和非结构化数据。 4. 数据映射 Hadoop和Hive之间的映射是首选的方式之一。Hive提供了一个SQL界面,允许数据科学家和开发人员访问和处理存储在Hadoop集群上的数据。因此,在Hive中创建的表会自动映射到Hadoop集群上的HDFS文件中。 HBase则局限于存储半结构化和非结构化数据,可以使用Hive和Apache Phoenix来更方便地访问和操作HBase数据。Apache Phoenix提供了一个SQL界面,允许开发人员和数据科学家使用标准SQL来访问和操作HBase数据。 因此,Flume、Kafka、Spark Streaming、HBase、MySQL和Hive之间的映射关系可以根据实际需求进行不同的组合。例如,Flume和Kafka可以协同工作,将数据传输到Hadoop集群上的HDFS或HBase中进行存储。Spark Streaming可以实时处理来自Hadoop集群上的HDFS、HBase或Kafka的数据。MySQL和Hive可以作为SQL引擎,提供方便的接口用于访问Hadoop集群的数据。HBase作为一个高性能、分布式的NoSQL数据库,可以在Hadoop集群上有效地处理半结构化和非结构化数据。 ### 回答3: flume、kafka、sparkstream、hbase、mysql和hive是在大数据生态系统中非常重要和流行的一些工具和技术。它们都具有独特的功能和用途,并广泛用于大规模数据处理和分析。 在这些工具和技术之间建立映射是非常重要的,因为它们可以协同工作并发挥其最大潜力。尤其是在大规模数据处理和分析方面,正确的工具和技术映射可以帮助我们更好地管理和处理海量数据。 flume是一个日志采集和处理系统,可以从数据源收集数据并将其传输到目标位置,如hbase、hive或Kafka。flume和kafka之间的映射通常用于处理数据流,其中flume作为生产者将日志数据发送到kafka,然后消费者可以使用sparkstream或其他工具将这些数据进行处理和分析。 kafka是一个分布式流处理平台,它可以处理大量数据流并实现实时数据处理。kafka和hbase之间的映射通常是将kafka作为数据来源,然后将数据写入hbase进行存储和管理。此外,可以使用hive或其他工具对hbase中存储的数据进行查询和分析。 sparkstream是一个实时流处理引擎,它可以处理来自kafka、flume等数据源的实时数据流。与hbase和mysql之间的映射通常是,sparkstream可以从这些存储系统中读取数据并对其进行处理和分析,并将结果存储回这些存储系统中。 hbase是一个分布式NoSQL数据库,它可以存储大量非结构化和半结构化数据。与hive之间的映射通常是,hive可以使用hbase表中存储的数据进行查询和分析,而hbase则提供了一个高可靠性的数据存储和管理系统。 mysql是一个关系型数据库管理系统,常用于较小的数据集合。(In 300 words) 总之,这些工具和技术都是互相关联的,在大数据生态系统中扮演着重要角色。正确的映射可以使它们协同工作,并处理大规模数据集的难题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值