1,原因
一般情况下,工程上需要处理的数量比较大, 比如我常处理的数据记录常常在千万级别以上。出现以上问题的原因就是:
- 和数据规模有关,
- 也和对该大规模的数据处理有关。
我出现的问题的代码如下,其中dataprocess()函数耗时较长
import pymongo
client = pymongo.MongoClient()
db = client['db_name']
col = db['col_name']
for item in col.find():
#dataprocess表示比较耗时的数据处理模块
dataprocess(item)
2,解决办法
- 方法一:为find() 函数设置 no_cursor_timeout = True,表示游标连接不会主动关闭(需要手动关闭)
import pymongo
client = pymongo.MongoClient()
db = client['db_name']
col = db['col_name']
cur = col.find(no_cursor_timeout = True)
for item in cur:
#dataprocess表示比较耗时的数据处理模块
dataprocess(item)
cur.close()
- 方法二:如果使用了方法一之后还出现报错,可以继续为find()函数设置batch_size参数,不过也说明数据处理模块也太耗时了,可以检查下数据处理模块的代码是否有问题。。。。
import pymongo
client = pymongo.MongoClient()
db = client['db_name']
col = db['col_name']
cur = col.find(no_cursor_timeout = True, batch_size = 5)
for item in cur:
#dataprocess表示比较耗时的数据处理模块
dataprocess(item)
cur.close()