月球圆顶的三维重建
1. 基于图像的形态测量数据确定
在对月球圆顶进行研究时,利用望远镜CCD图像和近期航天器图像来构建数字高程模型(DEM)是一种重要方法。同时,还会对从DEM推断出的形态测量参数(如圆顶高度)的误差区间进行估计,并将得到的圆顶高度与其他独立获得的高度测量值进行比较。
1.1 DEM的构建
-
阴影长度分析 :一种估计月球表面高程差的可靠方法是分析阴影长度。在CCD图像中,以像素为单位测量圆顶的直径 (D) 和其阴影的长度 (l)。通过测量视场中已知大小的陨石坑直径,可得到相应的以千米/像素为单位的图像比例尺。不过,需要仔细考虑倾斜地形的可能影响,因为与水平地形相比,下坡时测量的阴影长度会更长,上坡时则更短。对于低圆顶来说,即使在强烈斜射光照下,阴影也并非从圆顶顶部开始,而是从其侧面的某个点开始,所以确定的高度差值只是真实圆顶高度的下限。
- Ashbrook方法 :在假设圆顶表面为球形的前提下,当阴影长度等于圆顶直径的四分之一时,侧面坡度的平均值对应太阳仰角。观察者确定满足 (l = D/4) 时对应的太阳仰角 (\tilde{\mu}),从而得出圆顶高度 (h = (D/2)\tan\tilde{\mu})。该方法主要用于目视观测,但球形圆顶形状的假设限制了其适用性。利用此方法确定了圆顶C11、A2、H7、M11和M12的高度,相关数据如下表所示:
| 圆顶 | 坡度 (°) | 高度 (m) |
| — | — | — |
| C11 | 0.6 | 60 |
| A2 (Arago
- Ashbrook方法 :在假设圆顶表面为球形的前提下,当阴影长度等于圆顶直径的四分之一时,侧面坡度的平均值对应太阳仰角。观察者确定满足 (l = D/4) 时对应的太阳仰角 (\tilde{\mu}),从而得出圆顶高度 (h = (D/2)\tan\tilde{\mu})。该方法主要用于目视观测,但球形圆顶形状的假设限制了其适用性。利用此方法确定了圆顶C11、A2、H7、M11和M12的高度,相关数据如下表所示:
超级会员免费看
订阅专栏 解锁全文
3238

被折叠的 条评论
为什么被折叠?



