机器学习(李鸿毅)第一天

1.回归案例分析

Step1:找模型

 x为进化前cp值,y为进化后的cp值

Step2:方法的好处

 

x轴为cp值,y轴为进化后cp值

 

loss function是在衡量w和b的好坏

{\hat{y}}^{n}为真正的数值,b+w\cdot x_{cp}^{n}为预测值,相减的平方为估测的误差

 越红代表数值越大,越偏蓝色代表结果越好,颜色代表误差大小,每个点代表一个结果

argminf(x)为取使得y最小的x

随机选取初始值w0

计算w=w0时的微分

 常数项\eta为learning rate 

微分是负数要增加w值,是正数要减少w值

T次更新值后达到极小值local optimal 

通过微分找极小值

 

 

 在线性回归中,损失函数L是凸的。没有局部最优

 

 e代表蓝点到红线的竖直距离 

将线性改为二次函数 

引入三次方

 引入四次方 ,测试数据变糟糕了,过拟合

五次方,也过拟合 

训练数据,avarage error变小

测试数据,avarage error变大

 这就是过拟合,模型不是越复杂越好,选合适的就行

 

 

不同特征的x,选择不同的y函数代入 

线性函数

 将不同特征的x都考虑到得到好的trainingdata,得到好的预测结果testingdata

 

有没有隐藏因素

 重新设计模型 

 为什么首选平滑函数?
如果一些噪音破坏了输入X;当测试时,一个更平滑的函数的影响更小。

 训练误差:\lambda越大,考虑的训练误差越小
我们喜欢平滑的函数,但不要太平滑。

 宠物小精灵:原始CP和物种几乎决定了进化后的CP 进化后(可能还有其他隐藏因素)

梯度下降法
讲座内容:理论与技巧
过度拟合和正则化

后续讲座:这些背后的更多理论
我们最终在测试数据上得到平均误差=11.1

另一组新数据如何?低估?高估了?
后续讲座:验证

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值