SSA即静态单赋值,是一种中间表示形式。 之所以称之为单赋值,是因为每个名字在SSA中仅被赋值一次.
SSA是一种高效的数据流分析技术,目前几乎所有的现代编译器,如GCC、Open64、LLVM都有将SSA技术的支持, 不仅仅是编译器,Jikes RVM, HotSpot JVM, .Net的Mono,Python的Pypy, Andoroid的Dalvik,这些虚拟机/解释器中的Just-in-Time Compiler也有了SSA的支持。 Firefox的下一代JavaScript引擎IonMonkey中,也将为其JIT引入SSA。
可以看到,几乎所有热门的语言所用的热门编译器/解释器/虚拟机中都有了SSA。在SSA中间表示中,可以保证每个被使用的变量都有唯一的定义,即SSA能带来精确的使用–定义关系。许多利用使用–定义关系的优化就能更精确、更彻底、更高效。如
- 常数传播
- 死代码删除
- 全局
- 部分冗余删除
- 强度削弱
- 寄存器分配
为了节省内存空间,简化SSA上的算法,我们需要将插入的PHI节点数目最小化。 因为PHI节点本身只是一个概念性的节点,若插入过多不必要的PHI节点,算法就需要在控制流图的汇聚点针对每个分支做分析。 可以借用变量的支配边界(dominance frontier)进行PHI节点数目最消化。一般都通过直接计算支配边界的方式插入PHI节点。
那么对于复杂的指针、数组之类的访存,SSA应该如何处理呢? 数组和指针使得编译器无法确定define和use的具体变量。
给出了一种定义方式,通过引入maydef,mayuse和zero version使得编译器也能对别名(即指针和数组)存在的程序做SSA分析。 若通过指针为其所指区域赋值,就在此处插入maydef,表示可能对变量做了定义。同理,对使用指针所指向区域的值的,就插入一个mayuse。 因为无法确定指针所指向的到底是哪个变量,为了正确性,需要对所有变量都插入maydef动作。同样mayuse也是针对所有变量的。
当指针操作较多时,这种方式就会引入过多的新变量版本。因此就增加了zero version。 zero version的作用就是尽量把maydef所带来的版本数降低。 将那些很可能不会别名的都使用相同的zero version。 比如某个变量通过maydef产生了一个新版本之后,若还会有新的maydef操作,则直接生成zero version,不再生成新的version。
(完)