- 博客(942)
- 资源 (370)
- 收藏
- 关注
原创 IP65 IP45 IP68等等数字防护等级
2. 表示防止大于12mm的固体物体侵入,防止人的手指接触到内部之零件。3. 表示防止大于2.5mm的固体物体侵入,防止直径或厚度大于2.5mm之工具电线或类似的细小的外物侵入而接触到的内部零件。4. 表示防止大于1.0mm的固体物体侵入,防止直径或厚度大于1.0mm之工具、电线或类似的细小的外物侵入而接触到内部零件。8. 表示防止沉没时的水侵入 ,产品无限期的沉没早指定水压的状况下,能确保不因进水而造成损坏。6. 表示防止大浪的侵入 ,装设于甲板上的产品,防止因大浪的侵袭而浸水造成损坏。
2024-05-31 11:54:07 570
原创 latex转换为Word pandoc-2.0.1.1-windows.msi安装包以及使用说明
latex转换为Word pandoc-2.0.1.1-windows.msi安装包以及使用说明。在安装目录下,以管理员权限运行就可以直接实现转换操作。
2023-03-26 22:58:33 1238 1
原创 中文文本分类的一些理解
这个embedding_SougouNews.npz,和.pkl的作用如下所示!下图中的三段数值:嵌入向量,类别编号,句子长度;
2022-10-13 10:07:26 287
原创 文本多分类工作
测试集(test set):开发集中选出的最优的模型在测试集上进行评估。不会据此改变学习算法或参数。开发集(development set):调整参数、选择特征,以及对学习算法作出其它决定。训练集、开发集、测试集的划分比例为18W:1W:1W。训练集(training set):训练算法。
2022-09-20 09:19:30 448
原创 读transformer的笔记
单词向量矩阵用 Xn×d 表示, n 是句子中单词个数,d 是表示向量的维度 (论文中 d=512)。每一个 Encoder block 输出的矩阵维度与输入完全一致。在实际中,Self-Attention 接收的是输入(单词的表示向量x组成的矩阵X) 或者上一个 Encoder block 的输出。),之后得到句子所有单词的编码信息矩阵。上图是 Self-Attention 的结构,在计算的时候需要用到矩阵。1.嵌入向量方面,就是词嵌入和位置嵌入的加和。3.如下图:【目前不太理解!
2022-09-19 10:40:40 860
原创 Teacher Forcing
但是,在测试集中表现可能较差。因为,在测试集中没有ground truth的存在!就是比较依赖于ground truth数据。
2022-09-19 10:13:29 206
原创 浅浅懂了一些transformer中的self-attation
正如很多人说,其中灵魂就是下面这个公式:简单说,就是。输入的词汇会变成嵌入。就是高纬数据!这称为矩阵X!之后,经过三个可训练的参数矩阵生成Q、K、V这三个都是维度相同的!第一波,Q矩阵乘以K的转置矩阵。这个核心思想,就是两个向量点乘就是计算二者的相似性程度大小。自注意力机制,也就是包含着本身的一些字符串。【换句话说,如果K、V矩阵不是由上面的X矩阵生成的话,那么就叫做注意力机制啦。因为这样的点乘也是计算相似性程度的!】
2022-09-18 22:50:52 524
原创 打开PyCharm 弹窗failed to create jvm.jvm path...
【如果不嫌麻烦,可以安装一个everything进行搜索查找!将你做的操作进行修复即可,一般都是因为数值设置过大导致无法启动!,那么直接将这个文件删除也可以。如果,修改之后不成的话。
2022-09-13 15:34:46 846
原创 switch语句中的fall-through
在C++的switch语句中,如果当前case分支中不加break, 便会执行下一个case分支的代码。但是有些时候我们为了实现一些特定的逻辑,所以有意不加break, 但是又不想听到编译器的抱怨,该怎么样让编译器"闭嘴"呢?如下所示,由于n的值为1,代码首先执行case 1分支,然后又因为case 1分支中没有加break,所以接着执行case 2分支、case 3分支,一直到default分支。而很多C++初学者容易犯这样的错误:在本应当在case分支中加入break的时候却忘了加了。
2022-09-07 08:55:46 1337
原创 论文的参考文献如何对齐。
参考:word中设置论文参考文献完美对齐方法_sky0942的博客-CSDN博客_参考文献对齐方式参考文献序号之后是需要有一个空格的!1.选择全部的参考文献。右键--选择自定义列表。再选择右下角的自定义。如下图1: 点击下图2中的箭头处之后,进行参数设置。设置参数的时候,右侧会同时出现效果样式。选择适合自己的即可!...
2022-07-06 20:45:27 3280
原创 聚类和分类的最基本区别。
聚类和分类的最基本区别。分类简单来说,就是根据文本的特征或属性,划分到已有的类别中。也就是说,这些类别是已知的,通过对已知分类的数据进行训练和学习,找到这些不同类的特征,再对未分类的数据进行分类。而聚类的理解更简单,就是你压根不知道数据会分为几类,通过聚类分析将数据或者说用户聚合成几个群体,那就是聚类了。聚类不需要对数据进行训练和学习。分类属于监督学习,聚类属于无监督学习。常见的分类比如决策树分类算法、贝叶斯分类算法等。聚类的算法最基本的有系统聚类,K-means均值聚类,这些都很常见,网上资料一大推,不再
2022-06-22 21:15:13 568 1
原创 buildroot 交叉编译 剥离arm架构的二进制文件
1.下载:build-root 2019.02.1 6.0MB2.安装依赖包3.进行make的预备工作①target options:(设置成所需要的架构)②kernel headers:(设置成linux的内核版本)利用uname -r查看内核版本:③设置gcc版本:(4)保存配置文件,make进行编译:(如果遇到写错误,可能是无权限对文件写入,对整个buildroot文件进行chmod提权,再试一下即可)成功安装后,编译器都存放在output/host/usr/bin目录下,可以直接使
2022-06-17 20:31:44 342 1
原创 【解决】每次加载已经训练好的模型,生成的向量会有不同
这是因为系统在每次加载已经训练好的模型之后,针对同样的语句会生成不用的向量。解决办法就是,在系统加载一次之后。通过for循环,依次输入自己的语句。这样的也是符合本实验的应用场景的。就是 仅加载一次模型,使用很多次!结果示意:.........
2022-06-08 09:10:32 552 1
原创 deepwalk也可以对于字符串组成的图形进行嵌入,哪怕没有重复出现的数据
代码链接:https://blog.csdn.net/weixin_42859280/article/details/125054092?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22125054092%22%2C%22source%22%3A%22weixin_42859280%22%7D&ctrtid=hfPKvdeepwalk也可以对于字符串组成的图
2022-05-31 16:01:59 110
原创 调试分析deepwalk。分析其中的一些东西
1.in_degree 是入度的意思。就是有多少个边,进入了这一个节点!2.degree,就是出现多少次数的意思。3.edeges,就是很多边之间的关系!4. 下面这个图,in_degree、out_degree分别是入度以及出度{具体数字的}的意思。edges:是具体的边的意思。5.pred、succ分别是前继、后继的意思...
2022-05-31 10:31:40 135
原创 几个图采样 图嵌入技术
这些个图采样:采样都是具有倾向性的。特征选择存在偏颇!node2vec,下一步向哪里游走。是会参考当前权重的。struc2vec,下一跳倾向于游走到与当前节点最为相似的节点之中去。【因此,这个算法也是最为复杂的】...
2022-05-30 11:25:11 193
原创 使用python实现\记事本中去除掉空行数据
代码如下:"""读取存在空行的文件,删除其中的空行,并将其保存到新的文件中"""def rewrite(): with open('src-test.txt','r',encoding = 'utf-8') as fr,open('newsrc-test.txt','w',encoding = 'utf-8') as fd: for text in fr.readlines(): if text.split():
2022-05-14 22:52:48 661
原创 MAP是什么意思?LoU是什么意思?
mean average precision (MAP), 各类别AP的平均值AP: PR曲线下面积。PR曲线: Precision-Recall曲线Precision: TP / (TP + FP)Recall: TP / (TP + FN)LoU的意思:绿色标线是人为标记的正确结果(ground-truth),红色标线是算法预测的结果(predicted)。IoU是两个区域重叠的部分除以两个区域的集合部分得出的结果,通过设定的阈值,与这个IoU计算结果比较。..
2022-05-13 23:00:45 781
原创 ubuntu18 编译安装llvm6.0
LLVM官网LLVM Download Page解压 :xz -d **.tar.xz之后,会被后缀名为tar的包替代。tar -xvf **.tar生成文件夹!更改名字:步骤:1.cmake ../llvm -DLLVM_TARGETS_TO_BUILD=X86 -DCMAKE_BUILD_TYPE=Release2.make -j43.make install最终结果:...
2022-05-11 17:40:52 530
原创 seq2seq学习笔记1
简介机器翻译、人机对话、聊天机器人(如小冰、小爱、小艺。。。)等等对话生成场景人物,这些都是应用在当今社会都或多或少的运用到了我们这里所说的Seq2Seq。Seq2Seq模型是输出的长度不确定时采用的模型。seq2seq属于encoder-decoder结构的一种。本质上就是两个RNN模型的合作,一个作为编码器、一个作为解码器。这种情况一般是在机器翻译的任务中出现,将一句中文翻译成英文,那么这句英文的长度有可能会比中文短,也有可能会比中文长,所以输出的长度就不确定了。如下图,输入的中文长
2022-05-08 10:55:30 780
原创 python跳出双层for循环的解决方法
转:python跳出双层for循环的解决方法_Python_脚本之家代码:for i in range(5): for j in range(5): print(i, j) if i == 3 and j == 3: break else: continue break当次循环正常结束的时候才会执行else中的语句(如果当次循环执行了break,那么else不会执行)。注意:for j的else中的continue是对for i起作用的,
2022-05-06 19:31:47 3929 1
原创 nltk-同义词|反义词示范
前提是需要下载nltk数据集!import nltknltk.download()代码如下:from nltk.corpus import wordnet as wnl=[]for synset in wn.synsets('function'): print(synset.lemma_names()) for i in synset.lemmas(): l.append(i.name())print('\n\n*******function同义词集合如
2022-05-06 15:42:22 459
原创 python生成任意长度的字符串,并写入表格
代码如下:import csvimport randomimport stringdef write_to_csv(l): f = open('noise.csv', 'w', encoding='utf-8') # 2. 基于文件对象构建 csv写入对象 csv_writer = csv.writer(f) # 3. 构建列表头 # csv_writer.writerow(["id", "flag", "function_name"]) # c
2022-04-28 15:58:34 587
原创 根据具体的列表值,消除csv表格中的数据重复行
代码:import pandas as pddata = pd.read_csv(r"noise.csv")print(data)data1 = data.drop_duplicates(subset=['function_name'],keep='first')print(data1)data1.to_csv('noise.csv', index=0)#index=0,不写入索引,很实用#如果写入中文时有乱码,可以用utf-8-sig...
2022-04-28 15:56:21 414
原创 ubuntu18使用的软件源
163源:##163源deb http://mirrors.163.com/ubuntu/ bionic main restricted universe multiversedeb http://mirrors.163.com/ubuntu/ bionic-security main restricted universe multiversedeb http://mirrors.163.com/ubuntu/ bionic-updates main restricted universe m
2022-04-18 10:17:04 1374
原创 评价标准:ROC和AUC
作者:华为云开发者社区链接:https://www.zhihu.com/question/23700474/answer/1878757572来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。ROC的全名叫做Receiver Operating Characteristic,其主要分析工具是一个画在二维平面上的曲线——ROC 曲线。平面的横坐标是false positive rate(FPR),纵坐标是true positive rate(TPR)。对某个分类器.
2022-04-16 16:19:54 857
原创 吴恩达机器学习系列课程-基础知识
1.代价函数什么是代价函数? - 知乎除以2m是为了方便计算。通过求误差平均值。来确定最小取值。2.梯度下降寻找最小取值值(纵坐标为数值),使用梯度下降!对于二者进行同时更新为负的话,也是向右边偏移,也能得到自己想要的。梯度下降 更新规则:一旦达到收敛条件的话,迭代就结束。(局部最优,变为0。进行公式运算之后,数值仍然为原来的数值。)...
2022-04-07 10:11:19 1357 4
原创 static slice是什么呢?
参考:Computing Static Slice for Java Programs - 百度学术Slicing is an analysis technique that reduces programs to those statements that are relevant for a particular computation.顾名思义,切片也可以理解一些意思。
2022-04-05 14:36:52 496
latex转换为Word pandoc-2.0.1.1-windows.msi安装包以及使用说明
2023-03-26
优化.ll文件的ICFG特征提取,此版本可以清楚看到ICFG提取的情况
2022-11-30
.ll文件的ICFG特征提取,此版本可以清楚看到ICFG提取的情况
2022-11-30
cmake-3.16.0-Linux-x86-64.tar.gz
2022-10-17
Hadoop课程设计-基于Java和mapreduce实现的贝叶斯文本分类器设计
2022-10-07
SAFE代码需要的外部文件:safe_trained_X86.pb
2022-09-28
AMD64ARMOpenSSL.tar.gz SAFE代码需要的外部文件
2022-09-28
Chinese-Text-Classification-Pytorch-mas
2022-09-20
build-root 2019.02.1 6.0MB
2022-06-17
修改了deepwalk代码的GraphEmbedding-master
2022-05-30
seq2seq机器翻译opennmt外部下载的数据以及软件包torch-1.7.0-cp37-cp37m-win_amd64.w
2022-05-09
torch-1.10.2-cp36-cp36m-manylinux1_x86_64.whl
2022-05-09
官网网速不好,就先放出资源,需要自取。
2022-03-31
2021 - A Survey of Binary Code Similarity.pdf
2022-01-02
torch-1.0.0-cp36-cp36m-win_amd64.zip
2021-07-12
C# 图书馆管理系统(VS2005+MsSQL).zip
2021-06-01
Eclipse ECLIPSE eclipse-inst-win64.zip
2021-05-31
数据仓库与数据挖掘2018-2019年题目,复习资料.zip
2021-05-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人