两种方法来做,递归和迭代。递归注意结束条件,迭代注意入栈顺序,比如前序遍历需要先入栈根值取出后再入栈右子树和左子树,出栈时是左子树先出,这样就符合中左右的前序遍历方式。
递归:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
前序遍历:
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
preorder(root,res);
return res;
}
private void preorder(TreeNode root, List<Integer> res) {
if (root == null) {
return;
}
res.add(root.val);
preorder(root.left,res);
preorder(root.right,res);
}
}
中序遍历:
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
ArrayList<Integer> res=new ArrayList<Integer>();
inorder(root,res);
return res;
}
void inorder(TreeNode root,ArrayList<Integer> res){
if(root==null)return;
inorder(root.left,res);
res.add(root.val);
inorder(root.right,res);
}
}
//中序遍历是俩个月前写的,代码看起来很丑。
后序遍历:
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> res = new LinkedList<>();
postorder(root, res);
return res;
}
private void postorder(TreeNode root, List<Integer> res) {
if (root == null) return;
postorder(root.left, res);
postorder(root.right, res);
res.add(root.val);
}
}
迭代:
前序遍历:
//前序遍历顺序:中-左-右,入栈顺序:中-右-左
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> res = new LinkedList<>();
//创建栈来遍历元素入栈出栈。
Deque<TreeNode> test = new LinkedList<>();
if (root == null) return res;
//先把头元素入栈
test.push(root);
//栈不为空时一直循环遍历直到所有元素遍历结束
while (!test.isEmpty()) {
//创一个node接住出栈元素用来向res中放值,同时方便操作当前元素的左右子树。
TreeNode node = test.pop();
res.add(node.val);
//这里先判断的右子树,因为右子树先入栈则后出栈,符合中前后的前序遍历顺序。
//还有一点,这里之前有个疑问,如果一个root中的左右子树的左右子树都有值,
//但是pop()的操作只进行了一次,那右子树的子树怎么放入。
//修改代码后发现了错误,在向res放入根节点之后,会判断左右子树不为空的话,则向栈中继续放入左右子树,
//最后左子树全部拿出来后会接着判断右子树是否还有子树,如果有会进行入栈操作接着进行,逻辑就清晰了。
if(node.right != null) {
test.push(node.right);
}
if(node.left != null) {
test.push(node.left);
}
}
return res;
}
}
中序遍历:
//迭代和递归不同,只需要修改顺序就可以改变遍历方式,中序遍历顺序: 左-中-右 入栈顺序: 左-右
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<Integer>();
Deque<TreeNode> stk = new LinkedList<TreeNode>();
//当前根节点不为空或者栈不为空,为了在第一次循环时栈中为空时开始循环,
//最后一个root元素遍历后root为空的时候可以使循环继续进行。
while (root != null || !stk.isEmpty()) {
//判断根节点是否为空,不为空则循环将所有节点左子树放入栈中。
while (root != null) {
stk.push(root);
root = root.left;
}
//中序遍历按照左中右顺序,所以先取出左子树的值放入res中
root = stk.pop();
res.add(root.val);
//这步是取得右子树的关键,判断当前节点是否有右子树,有则进入继续重复遍历,
//没有则回到循环操作节点:root = stk.pop(),继续判断是否有右子树。
root = root.right;
}
return res;
}
}
后序遍历:
//和前序遍历类似,后序遍历顺序 左-右-中 入栈顺序:中-左-右 出栈顺序:中-右-左, 最后翻转结果
//准确说就是在前序遍历基础上改变了两点,一个是先入栈左子树后入栈右子树,一个是最后需要对结果翻转
//前序遍历是中左右,前序遍历的左右子树改变后是中右左,翻转后是左右中,
//这正好是后序遍历的顺序,就好理解了,记住就好。
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
Deque<TreeNode> stk = new LinkedList<>();
if (root == null) return res;
stk.push(root);
while (!stk.isEmpty()) {
TreeNode node = stk.pop();
res.add(node.val);
if (node.left != null) {
stk.push(node.left);
}
if (node.right != null) {
stk.push(node.right);
}
}
Collections.reverse(res);
return res;
}
}