leecode 二叉树的前中后序遍历

144. 二叉树的前序遍历

94. 二叉树的中序遍历

145. 二叉树的后序遍历

两种方法来做,递归和迭代。递归注意结束条件,迭代注意入栈顺序,比如前序遍历需要先入栈根值取出后再入栈右子树和左子树,出栈时是左子树先出,这样就符合中左右的前序遍历方式。

递归:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */

前序遍历:

class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        preorder(root,res);
        return res;
    }

    private void preorder(TreeNode root, List<Integer> res) {
        if (root == null) {
            return;
        }
        res.add(root.val);
        preorder(root.left,res);
        preorder(root.right,res);
    }
}


中序遍历:

class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        ArrayList<Integer> res=new ArrayList<Integer>();
        inorder(root,res);
        return res;
    }
    void inorder(TreeNode root,ArrayList<Integer> res){
        if(root==null)return;
        inorder(root.left,res);
        res.add(root.val);
        inorder(root.right,res);
    }
}
//中序遍历是俩个月前写的,代码看起来很丑。

后序遍历:

class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> res = new LinkedList<>();
        postorder(root, res);
        return res;
    }
    
    private void postorder(TreeNode root, List<Integer> res) {
        if (root == null) return;
        postorder(root.left, res);
        postorder(root.right, res);
        res.add(root.val);
    }
}

迭代:

前序遍历:
//前序遍历顺序:中-左-右,入栈顺序:中-右-左

class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> res = new LinkedList<>();
//创建栈来遍历元素入栈出栈。
        Deque<TreeNode> test = new LinkedList<>();
        if (root == null) return res;
//先把头元素入栈
        test.push(root);
//栈不为空时一直循环遍历直到所有元素遍历结束
        while (!test.isEmpty()) {
//创一个node接住出栈元素用来向res中放值,同时方便操作当前元素的左右子树。
            TreeNode node = test.pop();
            res.add(node.val);
//这里先判断的右子树,因为右子树先入栈则后出栈,符合中前后的前序遍历顺序。
//还有一点,这里之前有个疑问,如果一个root中的左右子树的左右子树都有值,
//但是pop()的操作只进行了一次,那右子树的子树怎么放入。
//修改代码后发现了错误,在向res放入根节点之后,会判断左右子树不为空的话,则向栈中继续放入左右子树,
//最后左子树全部拿出来后会接着判断右子树是否还有子树,如果有会进行入栈操作接着进行,逻辑就清晰了。
            if(node.right != null) {
                test.push(node.right);
            }
            if(node.left != null) {
                test.push(node.left);
            }
        }
        return res;
    }
}


中序遍历:

//迭代和递归不同,只需要修改顺序就可以改变遍历方式,中序遍历顺序: 左-中-右 入栈顺序: 左-右
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<Integer>();
        Deque<TreeNode> stk = new LinkedList<TreeNode>();
//当前根节点不为空或者栈不为空,为了在第一次循环时栈中为空时开始循环,
//最后一个root元素遍历后root为空的时候可以使循环继续进行。
        while (root != null || !stk.isEmpty()) {
//判断根节点是否为空,不为空则循环将所有节点左子树放入栈中。
            while (root != null) {
                stk.push(root);
                root = root.left;
            }
//中序遍历按照左中右顺序,所以先取出左子树的值放入res中
            root = stk.pop();
            res.add(root.val);
//这步是取得右子树的关键,判断当前节点是否有右子树,有则进入继续重复遍历,
//没有则回到循环操作节点:root = stk.pop(),继续判断是否有右子树。
            root = root.right;
        }
        return res;
    }
}

后序遍历:
//和前序遍历类似,后序遍历顺序 左-右-中 入栈顺序:中-左-右 出栈顺序:中-右-左, 最后翻转结果
//准确说就是在前序遍历基础上改变了两点,一个是先入栈左子树后入栈右子树,一个是最后需要对结果翻转
//前序遍历是中左右,前序遍历的左右子树改变后是中右左,翻转后是左右中,
//这正好是后序遍历的顺序,就好理解了,记住就好。

class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        Deque<TreeNode> stk = new LinkedList<>();
        if (root == null) return res;
        stk.push(root);
        while (!stk.isEmpty()) {
            TreeNode node = stk.pop();
            res.add(node.val);
            if (node.left != null) {
                stk.push(node.left);
            }
            if (node.right != null) {
                stk.push(node.right);
            }
        }
        Collections.reverse(res);
        return res;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值