Bloom Filter 概念和原理

目录

0. 简介

Bloom Filter 是一种空间效率很高的随机数据结构, 它利用位数组很简洁地表示一个集合, 并能判断一个元素是否属于这个集合. Bloom Filter 的这种高效是有一定代价的: 在判断一个元素是否属于某个集合时, 有可能会把不属于这个集合的元素误认为属于这个集合(False Positive). 因此, Bloom Filter 不适合那些“零错误”的应用场合. 而在能容忍低错误率的应用场合下, Bloom Filter 通过极少的错误换取了存储空间的极大节省. 它的优点是空间效率和查询时间都远远超过一般的算法, 缺点是有一定的误识别率和删除困难.

1. 集合表示和元素查询

下面我们具体来看 Bloom Filter 是如何用位数组表示集合的. 初始状态时, Bloom Filter 是一个包含 m 位的位数组, 每一位都置为 0.

Bloom Filter Initialization

为了表达 S={x1,x2,,xn} 这样一个 n 个元素的集合, Bloom Filter 使用 k 个相互独立的哈希函数(Hash Function), 它们分别将集合中的每个元素映射到 {1,,m} 的范围中. 对任意一个元素 x , 第 i 个哈希函数映射的位置 hi(x) 就会被置为 1 (1ik). 注意, 如果一个位置多次被置为 1 , 那么只有第一次会起作用, 后面几次将没有任何效果. 在下图中, k=3, 且有两个哈希函数选中同一个位置(从左边数第五位).

Bloom Filter Set

在判断 y 是否属于这个集合时, 我们对 y 应用 k 次哈希函数, 如果所有 hi(y) 的位置都是 1 (1ik), 那么我们就认为 y 是集合中的元素, 否则就认为 y 不是集合中的元素. 下图中 y1 就不是集合中的元素; y2 或者属于这个集合, 或者刚好是一个 False Positive.

Bloom Filter Judge

2. 错误率估计

前面我们已经提到了, Bloom Filter 在判断一个元素是否属于它表示的集合时会有一定的错误率(False Positive Rate), 下面我们就来估计错误率的大小. 在估计之前为了简化模型, 我们假设 kn<m k 个哈希函数是完全随机的. 当集合 S={x1,x2,,xn} 的所有元素都被 k 个哈希函数映射到 m 位的位数组中时, 这个位数组中某一位还是 0 的概率是:

p=(11m)kneknm=p

其中 1m 表示任意一个哈希函数选中这一位的概率(前提是哈希函数是完全随机的), (11m) 则表示哈希一次没有选中这一位的概率. 要把 S 完全映射到位数组中,需要做 kn 次哈希. 某一位还是 0 意味着 kn 次哈希都没有选中它, 因此这个概率就是 (11m)kn . 令 p=eknm 是为了简化运算, 这里用到了计算 e 时常用的近似:

limx(11x)x=e

ρ 为位数组中 0 的比例, 则 ρ 的数学期望 E(ρ)=p . 在 ρ 已知的情况下, 要求的错误率(False Positive Rate)为:

(1ρ)k(1p)k(1p)k

(1ρ) 为位数组中 1 的比例, (1ρ)k 就表示 k 次哈希都刚好选中 1 的区域的概率, 即 False Positive Rate. 上式中第二步近似在前面已经提到了, 现在来看第一步近似. p 只是 ρ 的数学期望, 在实际中 ρ 的值有可能偏离它的数学期望值. M. Mitzenmacher 已经证明[2], 位数组中 0 的比例非常集中地分布在它的数学期望值的附近. 因此, 第一步的近似得以成立. 分别将 p p 代入上式中, 得:

f=(1p)k=(1(11m)kn)k

f=(1p)k=(1eknm)k

相比 p f , 使用 p f 通常在分析中更为方便.

3. 最优的哈希函数个数

既然 Bloom Filter 要靠多个哈希函数将集合映射到位数组中, 那么应该选择几个哈希函数才能使元素查询时的错误率降到最低呢? 这里有两个互斥的理由: 如果哈希函数的个数多, 那么在对一个不属于集合的元素进行查询时得到 0 的概率就大; 但另一方面, 如果哈希函数的个数少, 那么位数组中的 0 就多. 为了得到最优的哈希函数个数, 我们需要根据上一小节中的错误率公式进行计算.

先用 p f 进行计算. 注意到 f=ekln(1eknm) , 我们令 g=kln(1eknm) , 只要让 g 取到最小, f 自然也取到最小. 由于 p=eknm , 我们可以将 g 写成:

g=mnln(p)ln(1p)

根据对称性法则可以很容易看出当 p=12 , 也就是 k=mnln2 时, g 取得最小值. 在这种情况下, 最小错误率 f=0.5k0.6185mn. 另外, 注意到 p 是位数组中某一位仍是 0 的概率, 所以 p=12 对应着位数组中 0 1 各一半. 换句话说, 要想保持错误率低, 最好让位数组有一半还空着.

需要强调的一点是, p=12 时错误率最小这个结果并不依赖于近似值 p f. 同样对于:

f=ekln(1(11m)kn)

g=kln(1(11m)kn)

p=(11m)kn

我们可以将 g 写成:

g=1nln(11m)ln(p)ln(1p)

同样根据对称性法则可以得到当 p=12 时, g 取得最小值.

4. 位数组的大小

下面我们来看看, 在不超过一定错误率的情况下, Bloom Filter 至少需要多少位才能表示全集中任意 n 个元素的集合. 假设全集中共有 u 个元素, 允许的最大错误率为 ϵ , 下面我们来求位数组的位数 m .

假设 X 为全集中任取 n 个元素的集合, s=F(X) 是表示 X 的位数组. 那么对于集合 X 中任意一个元素 x , 在 s 中查询 x 都能得到肯定的结果, 即 s 能够接受 x . 显然, 由于 Bloom Filter 引入了错误, s 能够接受的不仅仅是 X 中的元素, 它还能够接受 ϵ(un) 个 False Positive. 因此, 对于一个确定的位数组来说, 它能够接受总共 n+ϵ(un) 个元素. 在这些元素中, s 真正表示的只有其中 n 个, 所以一个确定的位数组可以表示的集合数量为:

(n+ϵ(un)n)

m 位的位数组共有 2m 个不同的组合, 进而可以推出, m 位的位数组可以表示的集合数量为:

2m(n+ϵ(un)n)

全集中 n 个元素的集合总共的数量为:

(un)

因此要让 m 位的位数组能够表示所有 n 个元素的集合, 必须有:

2m(n+ϵ(un)n)(un)

即:

mlog2(un)(n+ϵ(un)n)log2(un)(ϵun)log2ϵn=nlog21ϵ

上式中的近似前提是 n ϵu 相比很小, 这也是实际情况中常常发生的. 根据上式, 我们得出结论: 在错误率不大于 ϵ 的情况下, m 至少要等于 nlog21ϵ 才能表示任意 n 个元素的集合.

上一小节中我们曾算出当 k=mnln2 时错误率 f 最小, 这时 f=12k=12mnln2. 现在令 fϵ , 可以推出:

mnlog2(1ϵ)ln2=nlog2elog2(1ϵ)

这个结果比前面我们算得的下界 nlog21ϵ 大了 log2e1.44 倍. 这说明在哈希函数的个数取到最优时, 要让错误率不超过 ϵ , m 至少需要取到最小值的 1.44 倍.

5. Counting Bloom Filter

从前面对 Bloom Filter 的介绍可以看出, 标准的 Bloom Filter 是一种很简单的数据结构, 它只支持插入和查找两种操作. 在所要表达的集合是静态集合的时候, 标准 Bloom Filter 可以很好地工作. 但如果要表达的集合经常变动, 标准 Bloom Filter 的弊端就显现出来了, 因为它不支持删除操作.

Counting Bloom Filter 的出现解决了这个问题, 它将标准 Bloom Filter 位数组的每一位扩展为一个小的计数器(Counter), 在插入元素时给对应的 k 个 Counter 的值分别加 1, 删除元素时给对应的 k 个 Counter 的值分别减 1. Counting Bloom Filter 通过多占用几倍的存储空间的代价, 给 Bloom Filter 增加了删除操作. 那么问题来了, 到底要多占用几倍呢?

Counting Bloom Filter

先计算第 i 个 Counter 被增加 j 次的概率, 其中 n 为集合元素个数, k 为哈希函数个数, m 为 Counter 个数(对应来位数组的大小):

P(c(i)=j)=(nkj)(1m)j(11m)nkj

上面等式右端的表达式中, 前一部分表示从 nk 次哈希中选择 j 次, 中间部分表示 j 次哈希都选中了第 i 个 Counter, 后一部分表示其它 nkj 次哈希都没有选中第 i 个 Counter. 因此, 第 i 个 Counter 的值大于 j 的概率可以限定为:

P(c(i)j)(nkj)1mj(enkjm)j

上式第二步缩放中应用了估计阶乘的斯特林公式:

n!(ne)n2πn

前文已提到 k 的最优值为 mnln2, 现在我们限制 kmnln2 , 可以得到如下结论:

P(maxic(i)j)m(eln2j)j

如果每个 Counter 分配 4 位, 那么当 Counter 的值达到 16 时就会溢出. 这个概率为:

P(maxic(i)16)1.37×1015×m

这个值足够小, 因此对于大多数应用程序来说, 4 <script type="math/tex" id="MathJax-Element-2580">4</script> 位就足够了.

6. 应用场景

Bloom Filter 目前主要的应用场景如下:

  1. HTTP 缓存服务器、Web 爬虫

    主要工作是判断一条 URL 是否在现有的 URL 集合之中(可以认为这里的数据量级上亿). 对于 HTTP 缓存服务器, 当本地局域网中的 PC 发起一条 HTTP 请求时, 缓存服务器会先查看一下这个 URL 是否已经存在于缓存之中, 如果存在的话就没有必要去原始的服务器拉取数据了(为简单起见, 假设数据没有发生变化), 这样既能节省流量, 还能加快访问速度, 提高用户体验. 对于 Web 爬虫, 需要判断当前正在处理的网页是否已经处理过, 同样需要判断当前 URL 是否存在于已处理的 URL 列表中.

  2. 垃圾邮件过滤

    假设邮件服务器通过发送方的邮件域或者 IP 地址对垃圾邮件进行过滤, 那么就需要判断当前的邮件域或者 IP 地址是否处于黑名单之中. 如果邮件服务器的通信邮件数量非常大(也可认为数据量级上亿), 那么可以使用 Bloom Filter 算法.

7. 总结

在计算机科学中, 我们常常会碰到时间换空间或者空间换时间的情况, 即为了达到某一个方面的最优而牺牲另一个方面. Bloom Filter 在时间空间这两个因素之外又引入了另一个因素: 错误率. 在使用 Bloom Filter 判断一个元素是否属于某个集合时, 会有一定的错误率. 也就是说, 有可能把不属于这个集合的元素误认为属于这个集合(False Positive), 但不会把属于这个集合的元素误认为不属于这个集合(False Negative). 在增加了错误率这个因素之后, Bloom Filter 通过允许少量的错误来节省大量的存储空间.

自从 Burton Bloom 在 70 年代提出 Bloom Filter 之后, Bloom Filter 就被广泛用于拼写检查和数据库系统中. 近一二十年, 伴随着网络的普及和发展, Bloom Filter 在网络领域获得了新生, 各种 Bloom Filter 变种和新的应用不断出现. 可以预见, 随着网络应用的不断深入, 新的变种和应用将会继续出现, Bloom Filter 必将获得更大的发展.

参考文献

  1. A. Broder and M. Mitzenmacher. Network applications of bloom filters: A survey. Internet Mathematics, 1(4): 485–509, 2005.
  2. M. Mitzenmacher. Compressed Bloom Filters. IEEE/ACM Transactions on Networking 10:5 (2002), 604-612.
  3. Bloom slides. www.cs.jhu.edu/~fabian/courses/CS600.624/slides/bloomslides.pdf
  4. Hash. http://166.111.248.20/seminar/2006_11_23/hash_2_yaxuan.ppt
  5. Wikipedia. http://en.wikipedia.org/wiki/Bloom_filter

原文链接:http://blog.csdn.net/jiaomeng/article/details/1495500

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值