前言:
OpenCV(Open Source Computer Vision Library)
环境的搭建
在实现以下代码之前需要做一系列的准备工作,主要包括:
1. 安装一个Python.
2. 安装一个VScode(我用的是这个,当然也可以用其他类型的).
3. VScode安装Python,jupyter extension.
4. 安装OpenCV(首先使用 pip install opencv-python).
5.因为使用的是jupyter, 因此还需要对应安装ipykernel.
代码实现
只做简单的图片的加载,读写转换。新手可以一步一步试试。
import numpy as np
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
img = cv2.imread("IMG_5548.jpg")
plt.imshow(img)
img_rgb = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
plt.imshow(img_rgb)
#彩色图片转换为灰白图片
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
plt.imshow(img_gray,cmap= 'gray')
print(img_gray.shape)
#分别打印出每个通道
fig, axs = plt.subplots(nrows = 1, ncols = 3, figsize =(20,20))
for i in range(3):
ax = axs[i]
ax.imshow(img_rgb[:,:,i], cmap = "gray")
plt.show()
#转化成HSV 和HLS模式的图片
img_hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
img_hls = cv2.cvtColor(img,cv2.COLOR_BGR2HLS)
#画图
fig, (ax1, ax2) = plt.subplots(nrows = 1, ncols = 2, figsize = (20,20))
ax1.imshow(img_hsv)
ax2.imshow(img_hls)
plt.show