十一种方法的对比总结
方法名称 | 原理 | 数据要求 | 权重确定 | 计算复杂度 | 结果客观性 | 适用场景 |
---|---|---|---|---|---|---|
主成分分析法 | 通过线性变换将多个相关变量转化为少数几个互不相关的主成分,按方差大小排序,保留大部分信息实现降维 | 需要一定数量样本数据,数据最好服从正态分布 | 由算法基于数据内在结构和方差贡献自动确定 | 较高,涉及矩阵运算,如求特征值和特征向量 | 较高,基于数据本身结构确定权重和分析结果 | 数据维度高,需简化数据结构、提取主要信息,如市场调研数据降维分析 |
因子分析法 | 研究变量相关性,将多个相关变量归结为少数公共因子,假设原始变量由公共因子和特殊因子构成,通过分析确定因子载荷和得分 | 需要一定数量样本数据,对数据分布有一定要求,近似正态分布更好 | 由算法基于数据相关性分析确定,如通过对相关系数矩阵分解 | 高,涉及复杂矩阵运算和迭代计算,如求解因子载荷矩阵 | 较高,基于数据相关性确定,但旋转方法等存在一定主观性 | 适用于多变量数据,挖掘潜在结构和公共因子,如消费者行为多因素分析 |
模糊综合评价法 | 借助模糊数学理论,将边界模糊因素量化,构建模糊关系矩阵,结合权重进行模糊合成运算,确定评价对象在不同评价等级上的隶属程度 | 对数据分布无严格要求,需明确评价指标和评语集,以及构建模糊关系矩阵的数据 | 可通 |