【数据综合评价方法盘点】从原理到实践(十二)十一种方法的对比总结

十一种方法的对比总结

方法名称 原理 数据要求 权重确定 计算复杂度 结果客观性 适用场景
主成分分析法 通过线性变换将多个相关变量转化为少数几个互不相关的主成分,按方差大小排序,保留大部分信息实现降维 需要一定数量样本数据,数据最好服从正态分布 由算法基于数据内在结构和方差贡献自动确定 较高,涉及矩阵运算,如求特征值和特征向量 较高,基于数据本身结构确定权重和分析结果 数据维度高,需简化数据结构、提取主要信息,如市场调研数据降维分析
因子分析法 研究变量相关性,将多个相关变量归结为少数公共因子,假设原始变量由公共因子和特殊因子构成,通过分析确定因子载荷和得分 需要一定数量样本数据,对数据分布有一定要求,近似正态分布更好 由算法基于数据相关性分析确定,如通过对相关系数矩阵分解 高,涉及复杂矩阵运算和迭代计算,如求解因子载荷矩阵 较高,基于数据相关性确定,但旋转方法等存在一定主观性 适用于多变量数据,挖掘潜在结构和公共因子,如消费者行为多因素分析
模糊综合评价法 借助模糊数学理论,将边界模糊因素量化,构建模糊关系矩阵,结合权重进行模糊合成运算,确定评价对象在不同评价等级上的隶属程度 对数据分布无严格要求,需明确评价指标和评语集,以及构建模糊关系矩阵的数据 可通
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Is code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值