java实现二分查找-两种方式

版权声明: https://blog.csdn.net/maoyuanming0806/article/details/78176957

二分查找是一种查询效率非常高的查找算法。又称折半查找。

起初在数据结构中学习递归时实现二分查找,实际上不用递归也可以实现,毕竟递归是需要开辟额外的空间的来辅助查询。本文就介绍两种方法


二分查找算法思想


有序的序列,每次都是以序列的中间位置的数来与待查找的关键字进行比较,每次缩小一半的查找范围,直到匹配成功。


一个情景:将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。



二分查找图示说明


图片来源百度图片,感谢分享者


二分查找优缺点


优点是比较次数少,查找速度快,平均性能好;

其缺点是要求待查表为有序表,且插入删除困难。

因此,折半查找方法适用于不经常变动而查找频繁的有序列表。



使用条件:查找序列是顺序结构,有序。



java代码实现

使用递归实现

	/**
	 * 使用递归的二分查找
	 *title:recursionBinarySearch
	 *@param arr 有序数组
	 *@param key 待查找关键字
	 *@return 找到的位置
	 */
	public static int recursionBinarySearch(int[] arr,int key,int low,int high){
		
		if(key < arr[low] || key > arr[high] || low > high){
			return -1;				
		}
		
		int middle = (low + high) / 2;			//初始中间位置
		if(arr[middle] > key){
			//比关键字大则关键字在左区域
			return recursionBinarySearch(arr, key, low, middle - 1);
		}else if(arr[middle] < key){
			//比关键字小则关键字在右区域
			return recursionBinarySearch(arr, key, middle + 1, high);
		}else {
			return middle;
		}	
		
	}

不使用递归实现(while循环)

	/**
	 * 不使用递归的二分查找
	 *title:commonBinarySearch
	 *@param arr
	 *@param key
	 *@return 关键字位置
	 */
	public static int commonBinarySearch(int[] arr,int key){
		int low = 0;
		int high = arr.length - 1;
		int middle = 0;			//定义middle
		
		if(key < arr[low] || key > arr[high] || low > high){
			return -1;				
		}
		
		while(low <= high){
			middle = (low + high) / 2;
			if(arr[middle] > key){
				//比关键字大则关键字在左区域
				high = middle - 1;
			}else if(arr[middle] < key){
				//比关键字小则关键字在右区域
				low = middle + 1;
			}else{
				return middle;
			}
		}
		
		return -1;		//最后仍然没有找到,则返回-1
	}

测试

测试代码:

	public static void main(String[] args) {

		int[] arr = {1,3,5,7,9,11};
		int key = 4;
		//int position = recursionBinarySearch(arr,key,0,arr.length - 1);
		
		int position = commonBinarySearch(arr, key);

               if(position == -1){
			System.out.println("查找的是"+key+",序列中没有该数!");
		}else{
			System.out.println("查找的是"+key+",找到位置为:"+position);
		}
		
	}

recursionBinarySearch()的测试:key分别为0,9,10,15的查找结果

查找的是0,序列中没有该数!

查找的是9,找到位置为:4

查找的是10,序列中没有该数!

查找的是15,序列中没有该数!

commonBinarySearch()的测试:key分别为-1,5,6,20的查找结果

查找的是-1,序列中没有该数!

查找的是5,找到位置为:2

查找的是6,序列中没有该数!

查找的是20,序列中没有该数!


时间复杂度

采用的是分治策略

最坏的情况下两种方式时间复杂度一样:O(log2 N)


最好情况下为O(1)


空间复杂度

  算法的空间复杂度并不是计算实际占用的空间,而是计算整个算法的辅助空间单元的个数

非递归方式:
  由于辅助空间是常数级别的所以:
  空间复杂度是O(1);

递归方式:

 递归的次数和深度都是log2 N,每次所需要的辅助空间都是常数级别的:
 空间复杂度:O(log2N )



没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试