Strom集群搭建

Strom集群搭建

1.  说明

Storm0.9以前的版本依靠0MQ传输数据,但是0mq对操作系统的依赖程度高,不要配置,容易出现兼容性问题。0.9以后的版本采用jetty做数据传输,所以不需要在安装0MQ

2.  准备

Jdk  strom的部分代码用java编写,需要依赖jdk,我用的是1.7

Python storm依赖python,如果系统自带的python2.6以下版本需要升级,可以直接在终端输入:python查看系统自带python的版本

Zookeeper strom使用zookeeper做服务协调,zookeeper安装参考:http://blog.csdn.net/mapengbo521521/article/details/41777721

 

3.  Python的安装

下载地址:http://www.python.org/

Linux下安装Python的操作相当简单,按如下步骤操作即可:

解压:

tar zxvf    Python-3.2.2.tgz

安装:

cd Python-3.2.2

./configure

make

make install

 

此时输入”python”命令,仍然显示是旧版本的,这就需要创建软连接:

cd /usr/bin

rm -rf python

ln -s /home/python/Python-3.2.2/python python

再次数据“python”可以看到已经是新版本的python

python

4.  安装Storm

下载地址:http://mirrors.cnnic.cn/apache/storm/apache-storm-0.9.4/apache-storm-0.9.4.tar.gz

解压

tar -zxf apache-storm-0.9.4.tar.gz

修改配置

cd /home/hadoop/apache-storm-0.9.4/conf

vi storm.yaml

添加以下内容(蓝色字体内容):

##集群使用的Zookeeper集群地址

storm.zookeeper.servers:

    - "hadoop1"

    - "hadoop2"

    - "hadoop3"

storm.zookeeper.port: 2181

 

##集群的Nimbus机器的地址

nimbus.host: "hadoop1"

##NimbusSupervisor迚程用于存储少量状态,如jars confs等的本地磁盘目录,需要提前创建该目录并给以足够的访问权限

storm.local.dir: "/home/hadoop/storm-0.9.4/data"

##对于每个Supervisor工作节点,需要配置该工作节点可以运行的worker数量。每个worker占用一个单独的端口用于接收消息,该配置选项即用于定义哪些端口是可被worker使用。默认情况下,每个节点上可运行4workers,分别在6700 6701 67026703端口上。

supervisor.slots.ports:

    - 6700

    - 6701

    - 6702

    - 6703

创建数据目录

cd /home/hadoop/storm-0.9.4/

 

mkdir data

scp -rp storm-0.9.4/ root@hadoop2:/home/hadoop/

scp -rp storm-0.9.4/ root@hadoop3:/home/hadoop/

 

##编辑环境变量##

[grid@hadoop4 ~]$ vim /etc/profile

export STORM_HOME=/home/hadoop/storm-0.9.4

export PATH=$PATH:$STORM_HOME/bin

source /etc/profile

再配置从节点环境变量

##启动Storm(确保zookeeper已经启动)##

storm nimbus &  ##在主节点上运行Nimbus后台程序

storm supervisor &  ##在工作节点上运行Supervisor后台程序

storm supervisor &

storm ui &  ##在主节点上运行UI程序,启动后可以在浏览器上输入http://主节点的ip:port(默认8080端口)

storm logviewer &  ##在主节点上运行LogViewer程序,启动后在UI上通过点击相应的Woker来查看对应的工作日志

 

[root@hadoop1 ]$ jps

2959 QuorumPeerMain

3310 logviewer

3414 Jps

3228 nimbus

3289 core

[root@hadoop2 ~]$ jps

2907 QuorumPeerMain

3215 Jps

3154 supervisor

[root@hadoop3 ~]$ jps

3248 Jps

2935 QuorumPeerMain

3186 supervisor

前面的启动方式不能作为后台服务启动,启动Storm所有后台服务:

> bin/storm nimbus >/dev/null 2>&1 &

> bin/storm supervisor>/dev/null 2>&1 &

> bin/storm ui >/dev/null 2>&1 &

> bin/storm logviewer > /dev/null 2>&1 &

访问:http://hadoop1:8080

5.  测试

说明:需要引入/home/hadoop/storm-0.9.4/lib下的jar

1.  Spout消息发送

package test.storm;

 

import java.util.Map;

import java.util.Random;

 

import backtype.storm.spout.SpoutOutputCollector;

import backtype.storm.task.TopologyContext;

import backtype.storm.topology.OutputFieldsDeclarer;

import backtype.storm.topology.base.BaseRichSpout;

import backtype.storm.tuple.Fields;

import backtype.storm.tuple.Values;

 

/**

 * Spout起到和外界沟通的作用,他可以从一个数据库中按照某种规则取数据,也可以从分布式队列中取任务

 *

 * @author Administrator

 *

 */

@SuppressWarnings("serial")

publicclass SimpleSpoutextends BaseRichSpout{

    //用来发射数据的工具类

    private SpoutOutputCollectorcollector;

    privatestatic String[]info =new String[]{

        "comaple\t,12424,44w46,654,12424,44w46,654,",

        "lisi\t,435435,6537,12424,44w46,654,",

        "lipeng\t,45735,6757,12424,44w46,654,",

        "hujintao\t,45735,6757,12424,44w46,654,",

        "jiangmin\t,23545,6457,2455,7576,qr44453",

        "beijing\t,435435,6537,12424,44w46,654,",

        "xiaoming\t,46654,8579,w3675,85877,077998,",

        "xiaozhang\t,9789,788,97978,656,345235,09889,",

        "ceo\t,46654,8579,w3675,85877,077998,",

        "cto\t,46654,8579,w3675,85877,077998,",

        "zhansan\t,46654,8579,w3675,85877,077998,"};

   

    Random random=new Random();

   

    /**

     * 初始化collector

     */

    publicvoid open(Map conf, TopologyContext context, SpoutOutputCollector collector) {

        this.collector = collector;

    }

   

    /**

     * SpoutTracker类中被调用,每调用一次就可以向storm集群中发射一条数据(一个tuple元组),该方法会被不停的调用

     */

    @Override

    publicvoid nextTuple() {

        try {

            String msg = info[random.nextInt(11)];

            //调用发射方法

            collector.emit(new Values(msg));

            //模拟等待100ms

            Thread.sleep(100);

        } catch (InterruptedException e) {

            e.printStackTrace();

        }

    }

 

    /**

     * 定义字段id,该id在简单模式下没有用处,但在按照字段分组的模式下有很大的用处。

     * declarer变量有很大作用,我们还可以调用declarer.declareStream();来定义stramId,该id可以用来定义更加复杂的流拓扑结构

     */

    @Override

    publicvoid declareOutputFields(OutputFieldsDeclarer declarer) {

        declarer.declare(new Fields("source"));//collector.emit(new Values(msg));参数要对应

    }

 

}

 

2.  Bolt消息处理程序

 

package test.storm;

 

import backtype.storm.topology.BasicOutputCollector;

import backtype.storm.topology.OutputFieldsDeclarer;

import backtype.storm.topology.base.BaseBasicBolt;

import backtype.storm.tuple.Fields;

import backtype.storm.tuple.Tuple;

import backtype.storm.tuple.Values;

 

/**

 * 接收喷发节点(Spout)发送的数据进行简单的处理后,发射出去。

 *

 * @author Administrator

 *

 */

@SuppressWarnings("serial")

publicclass SimpleBoltextends BaseBasicBolt {

 

    publicvoid execute(Tuple input, BasicOutputCollector collector) {

        try {

            String msg = input.getString(0);

            if (msg !=null){

                //System.out.println("msg="+msg);

                collector.emit(new Values(msg +"msg is processed!"));

            }

               

        } catch (Exception e) {

            e.printStackTrace();

        }

    }

 

    publicvoid declareOutputFields(OutputFieldsDeclarer declarer) {

        declarer.declare(new Fields("info"));

    }

 

}

 

3.  程序入口main

 

package test.storm;

 

import backtype.storm.Config;

import backtype.storm.LocalCluster;

import backtype.storm.StormSubmitter;

import backtype.storm.topology.TopologyBuilder;

 

/**

 * 定义了一个简单的topology,包括一个数据喷发节点spout和一个数据处理节点bolt

 *

 * @author Administrator

 *

 */

publicclass SimpleTopology {

    publicstaticvoid main(String[] args) {

       try {

           //实例化TopologyBuilder类。

           TopologyBuilder topologyBuilder =new TopologyBuilder();

           //设置喷发节点并分配并发数,该并发数将会控制该对象在集群中的线程数。

           topologyBuilder.setSpout("SimpleSpout",new SimpleSpout(), 1);

           //设置数据处理节点并分配并发数。指定该节点接收喷发节点的策略为随机方式。

           topologyBuilder.setBolt("SimpleBolt",new SimpleBolt(), 3).shuffleGrouping("SimpleSpout");

           Config config = new Config();

           config.setDebug(true);

           if (args !=null && args.length > 0) {

              config.setNumWorkers(1);

              StormSubmitter.submitTopology(args[0], config, topologyBuilder.createTopology());

           } else {

              //这里是本地模式下运行的启动代码。

              config.setMaxTaskParallelism(1);

              LocalCluster cluster =new LocalCluster();

              cluster.submitTopology("simple", config, topologyBuilder.createTopology());

           }

 

       } catch (Exception e) {

           e.printStackTrace();

       }

    }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值