随机选择算法

本文介绍了一种基于快速排序原理的随机选择算法,用于从无序数组中找出第k大的数。该算法通过随机选取基准元素并进行分区操作,避免了快速排序在最坏情况下的时间复杂度退化问题,实现了平均时间复杂度为O(n)的高效查找。
摘要由CSDN通过智能技术生成

随机选择算法

问题

从一个无序数组中求出第k大的数。

解法

原理与快速排序相似,在快排基础上用数组中随机元素代替第一个元素,这样可以保证不存在一组特定的数据能使该算法出现最坏情况(例如对于快速排序来说,最坏情况是序列中元素已经接近有序,这时时间复杂度会劣化到 O ( n 2 ) O(n^2) O(n2))。

利用randPartition函数重排数组,使得随机元素p左边的数均小于等于p,右边的数均大于p,此时判断p下标m即表明p为数组中的第m大数。若 m > k,则往p左侧递归,找到左侧区间中的第k大数;若 m < k,则往p右侧递归,找到右侧区间中的第 k - m 大数。

期望时间复杂度为 O ( n ) O(n) O(n)

#include <ctime>
#include <cstdlib>
#include <cmath>

/* 以随机元素为界,划分左右区间 */
int randPartition(int a[], int left, int right)
{
    int p = (int) round(1.0 * rand() / RAND_MAX * (right - left) + left);   // 生成一个区间[left, right]内的随机下标
    
    int temp = a[p];
    a[p] = a[left];
    a[left] = temp;     // 将随机元素与区间第一个元素交换,并用temp记录其值
    
    while (left < right)
    {
        while (left < right && a[right] > temp)
            right--;
        a[left] = a[right];
        while (left < right && a[left] <= temp);
            left++;
        a[right] = a[left];
    }
    a[left] = temp;     // 将随机元素放在夹出来的位置
    return left;        // 返回下标
}

/* 找到第k大数,并对数组进行划分 */
void randSelect(int a[], int left, int right, int k)
{
    if (left == right)      // 递归边界
        return;
    
    int p = randPartition(a, left, right);      // 以随机元素为界划分左右区间
    int m = p - left + 1;       // a[p]是数组中的第m大数
    
    if (m == k)
        return;
        
    if (m > k)      // 第k大数在左侧,找到左区间中的第k大数
        randSelect(a, left, p - 1, k);
    else            // 第k大数在右侧,找到右区间中的第 k - m 大数
        randSelect(a, p + 1, right, k - m);
}



int main()
{
    srand((unsigned)time(NULL));        // 初始化随机数种子
    
    
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值