1. 题目描述
输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数。例如输入12,从1到12这些整数中包含1的数字有1,10,11和12,1一共出现了5次。
2. 题目来源
第一次看到是在《剑指Offer》第2版上,面试题32。leetcode和牛客网上都有这道题。
3. 本文的目的
看了《剑指Offer》上的解法,我觉得不能算好:
这段解释描述有些不清晰,而且没有图,难以理解。
从书中给出的实现上来看,显得有些凌乱。
在这篇博客里,会给出一个我对这道题的解法,包括完整的解题思路,完整代码,时间复杂度分析,以及在leetcode和牛客网上的提交结果。
4. 解题思路
考虑将n的十进制的每一位单独拿出讨论,每一位的值记为weight。
1) 个位
从1到n,每增加1,weight就会加1,当weight加到9时,再加1又会回到0重新开始。那么weight从0-9的这种周期会出现多少次呢?这取决于n的高位是多少,看图:
以534为例,在从1增长到n的过程中,534的个位从0-9变化了53次,记为round。每一轮变化中,1在个位出现一次,所以一共出现了53次。
再来看weight的值。weight为4,大于0,说明第54轮变化是从0-4,1又出现了1次。我们记1出现的次数为count,所以:
c
o
u
n
t
=
r
o
u
n
d
+
1
=
53
+
1
=
54
count = round+1 = 53 + 1 = 54
count=round+1=53+1=54
如果此时weight为0(n=530),说明第54轮到0就停止了,那么:
c
o
u
n
t
=
r
o
u
n
d
=
53
count = round = 53
count=round=53
2) 十位
对于10位来说,其0-9周期的出现次数与个位的统计方式是相同的,见图:
不同点在于:从1到n,每增加10,十位的weight才会增加1,所以,十位上的一轮0-9周期内,1会出现10次。即rount10。
再来看weight的值。当此时weight为3,大于1,说明第6轮出现了10次1,则:
count = round10+10 = 5*10+10 = 60
如果此时weight的值等于0(n=504),说明第6轮到0就停止了,所以:
count = round10+10 = 510 = 50
如果此时weight的值等于1(n=514),那么第6轮中1出现了多少次呢?很明显,这与个位数的值有关,个位数为k,第6轮中1就出现了k+1次(0-k)。我们记个位数为former,则:
count = round10+former +1= 510+4 = 55
3) 更高位
更高位的计算方式其实与十位是一致的,不再阐述。
4) 总结
将n的各个位分为两类:个位与其它位。
对个位来说:
若个位大于0,1出现的次数为round1+1
若个位等于0,1出现的次数为round1
对其它位来说,记每一位的权值为base,位值为weight,该位之前的数是former,举例如图:
则:
- 若weight为0,则1出现次数为round*base
- 若weight为1,则1出现次数为round*base+former+1
- 若weight大于1,则1出现次数为rount*base+base
比如:
- 534 = (个位1出现次数)+(十位1出现次数)+(百位1出现次数)
=(53 * 1+1)+(5 * 10+10)+(0 * 100+100)= 214 - 530 = (53 * 1)+(5 * 10+10)+(0 * 100+100) = 213
- 504 = (50 * 1+1)+(5 * 10)+(0 * 100+100) = 201
- 514 = (51 * 1+1)+(5 * 10+4+1)+(0 * 100+100) = 207
- 10 = (1 * 1)+(0 * 10+0+1) = 2
python代码
class Solution:
def NumberOf1Between1AndN_Solution(self, n):
if n<=0:
return 0
round = n
count = 0
base = 1
while round != 0:
weight = round % 10
round = round / 10
count += round*base
if weight > 1:
count += base
elif weight == 1:
count += (n % base) + 1
base = 10 * base
return count