1.逻辑回归是这样的一个过程:面对一个分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏。
2.逻辑回归的思想是在之前的一般线性回归模型基础上添加logistic函数进行包裹,是一个被logistic方程归一化后的线性回归,只用于处理二分类问题。
3.我们可以构建损失函数,逻辑回归模型的损失函数是对数损失,其对应的损失式子如下:
其中:
*m:训练样本的个数
* :逻辑回归式预测得到的值。
*Y:原训练样本中的Y,这是目标标签。
*i:表示第几个样本。
4.之后使用梯度下降算法来迭代找到最佳的 参数。
5.优缺点
优点:
*实现简单,广泛的应用于工业问题上;
*速度快,适合二分类问题
*简单易于理解,直接看到各个特征的权重(方式很直观)
*能容易地更新模型吸收新的数据
缺点:
*对数据和场景的适应能力有局限性,不如决策树算法适应性那么强。
*当特征空间很大时,逻辑回归的性能不是很好;
*容易欠拟合,一般准确度不太高