《Universal Style Transfer via Feature Transforms》论文解读

论文名字为:《Universal Style Transfer via Feature Transforms》

前言

1.传统的风格迁移模型存在需要大量耗时、调参的问题,原因在于:            

        [1]通过计算原图和风格图的 content loss和style loss来保障迁移的效果,这导致对于每个风格都需要专门训练对应的网络,而训练是十分耗时的。            

        [2]对于style和content loss 我们仍然需要通过对layer的尝试参数,来得到一个和style较为匹配的表述才能有较好的效果,且针对不同的style这一步骤需要重新training,所以需要大量调参的过程。

可以看出问题主要出在风格上了,因此如何不单独对风格进行训练 而实现style transfer是一个很重要的问题,本文对应提出一种encoder/decoder的方式,来进行不需要训练的style transfer。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值