论文名字为:《Universal Style Transfer via Feature Transforms》
前言
1.传统的风格迁移模型存在需要大量耗时、调参的问题,原因在于:
[1]通过计算原图和风格图的 content loss和style loss来保障迁移的效果,这导致对于每个风格都需要专门训练对应的网络,而训练是十分耗时的。
[2]对于style和content loss 我们仍然需要通过对layer的尝试参数,来得到一个和style较为匹配的表述才能有较好的效果,且针对不同的style这一步骤需要重新training,所以需要大量调参的过程。
可以看出问题主要出在风格上了,因此如何不单独对风格进行训练 而实现style transfer是一个很重要的问题,本文对应提出一种encoder/decoder的方式,来进行不需要训练的style transfer。