凡是涉及到排序,就能看到一个概念:Permutation(排列)。本文探究一下这个概念背后的实现。
这个概念大家一定熟悉:Permutation and Combination,排列组合。
Permutation
Permutation 是排序的产物,是排序结果的索引。Permutation 是一个长度为 limit 的 PodArray, 它标识了根据排序列排序之后的排序位置。
getPermutation 一个简化的实现:
template <typename T>
void ColumnVector<T>::getPermutation(
bool reverse,
size_t limit,
int nan_direction_hint,
IColumn::Permutation & perm) const
{
std::partial_sort(
perm.begin(),
perm.begin() + limit,
perm.end(),
greater(*this, nan_direction_hint));
}
permute 函数
通过 getPermutation 做好排序后,仅仅是逻辑上有序了,原始的数据还是无序的。为了便于后继操作,需要让数据在物理上有序。按照这个 perm 规则利用 permute
函数生成新的列,就是排序已经完成的物理有序列了。
早期版本的实现:
ColumnPtr ColumnVector<T>::permute(const IColumn::Permutation & perm, size_t limit) const
{
typename Self::Container & res_data = res->getData();
for (size_t i = 0; i < limit; ++i)
res_data[i] = data[perm[i]];
return res;
}
最新版本的实现: 根据 limit 创建了一个 Container,然后将 perm 中的前 limit 个值整理拷贝出来,写入到 Container 中。
template <typename T>
ColumnPtr ColumnVector<T>::permute(const IColumn::Permutation & perm, size_t limit) const
{
return permuteImpl(*this, perm, limit);
}
template <typename Column>
ColumnPtr permuteImpl(const Column & column, const IColumn::Permutation & perm, size_t limit)
{
limit = getLimitForPermutation(column.size(), perm.size(), limit);
return column.indexImpl(perm, limit);
}
template <typename T>
template <typename Type>
ColumnPtr ColumnVector<T>::indexImpl(const PaddedPODArray<Type> & indexes, size_t limit) const
{
assert(limit <= indexes.size());
auto res = this->create(limit);
typename Self::Container & res_data = res->getData();
TargetSpecific::Default::vectorIndexImpl<Container, Type>(data, indexes, limit, res_data);
return res;
}
template <typename Container, typename Type>
inline void vectorIndexImpl(const Container & data, const PaddedPODArray<Type> & indexes, size_t limit, Container & res_data)
{
for (size_t i = 0; i < limit; ++i)
res_data[i] = data[indexes[i]];
}
思考:为什么要引入 Permutation 呢?直接对原始数据排好序不就行了,引入中间状态有什么好处?
个人猜测:避免频繁移动原始值,仅仅在所有列都排好序之后才统一整理(permute)原始值。
CK 的多列排序比较有意思:它假设第一列大概率不相等,这时候只需要比较第一列即可。如果第一列有很多等值元素,那么他就把这些等值元素单独拎出来组成很多 ranges,然后对这些 ranges 内的值再排序。