题目链接: https://www.hackerrank.com/challenges/random-number-generator-1
题解: 假设1-N产生的概率分别为p[1],....p[N],
则期望得分为sigma(i=1....n,j=i....n,p[i]*p[j]*(i+j))-sigma(i=1....n,p[i]*p[i]*2*i).
看到这个式子,菜鸡博主可能没有什么高超的数学姿势啊,于是开始强推------>好像并没有什么卵用,
然而因为太菜,博主并没有想到把期望得分的计算拆开来看考虑每个数的贡献(还是万能的UOJ群的某大牛讲的)
于是考虑每个数字对于答案的贡献,则期望得分可以写成sigma(i=1...n,2*i*p[i]*(1-p[i])).
这个式子中,2是常数扔掉,需要最大化的式子就变成了sigma(i=1...n,i*p[i]*(1-p[i])).
而显然的是,为了使这个式子的值最大化,p[i]*(1-p[i])的值显然单调不下降,同时,任何pi的值都不会大于0.5.
根据这个性质,考虑分析样例法---->
样例为N=3,最优情况下: p[1]=5/22,p[2]=4/11,p[3]=9/22.