1. 特征图与token的区别:
-
特征图(Feature Map):
- 特征图通常是卷积神经网络(CNN)中生成的 张量,例如 H×W×CH \times W \times CH×W×C,其中:
- HHH 和 WWW 分别是图像的高度和宽度(或说特征图的尺寸)。
- CCC 是通道数(channels),即每个像素位置的特征数量。
- 特征图通常表示图像中不同局部区域的特征,通过卷积操作从原始图像中提取的空间信息。
- 特征图通常是卷积神经网络(CNN)中生成的 张量,例如 H×W×CH \times W \times CH×W×C,其中:
-
Token:
- 在 Transformer 中,token 通常是 向量,表示数据中某个单位的抽象特征(例如一个单词、一个图像的块、一个图像的关键点等)。
- 这些 token 是通过 嵌入(Embedding) 操作从特征图或者原始输入数据中提取出来的,每个 token 是一个固定维度的向量。
- 在图像处理任务中,例如在 Vision Transformer(ViT)中,每个 token 可以表示图像中的一个 patch(小块)或者 关键点,其维度是一个固定大小的向量。
2. 特征图和token的转换:
通常,特征图 和 token 的转换是通过 展平(Flattening) 和 嵌入(Embedding) 等操作来完成的。具体来说:
-
从特征图到token:
-
从token到特征图:
3. 实例说明:
假设你正在处理一张 224×224 的图片,并希望将其转化为 token 以便送入 Transformer 模型:
-
特征图的生成:
-
展平和token化:
-
嵌入(Embedding):
4. 总结:
- 特征图(Feature Map) 是一个张量,通常表示图像或视频的局部特征,维度为 H×W×C。
- Token 是一个向量,表示图像或其他数据的基本单位(如关键点、图像块等)。在 Transformer 模型中,token 是通过特征图的展平和嵌入操作得到的。
- 特征图 和 token 可以通过 展平 和 嵌入 等方式进行转换,特别是在计算机视觉中的 Transformer 模型中,token 通常是通过卷积神经网络生成的特征图展平得到的。
特征图和 token 是互相关联的概念,前者通常用于局部特征的表示,后者则用于 Transformer 中全局信息的建模和交互。