题目:
给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, …)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。
示例 1:
输入: n = 12
输出: 3
解释: 12 = 4 + 4 + 4.
示例 2:
输入: n = 13
输出: 2
解释: 13 = 4 + 9.
思路:利用dp将n之前的所有结果都求出来并保存。
d[n]=min(d[n],d[n-j*j)+1)
class Solution {
public:
int numSquares(int n) {
// 动态规划
vector<int> d(n+1,INT_MAX);
d[0]=0;
d[1]=1;
for(int i(1);i<=n;i++){
int j=1;
while(j*j<=i){
d[i]=d[i]<(d[i-j*j]+1)?d[i]:(d[i-j*j]+1);
j++;
}
}
return d[n];
}
};```