《量子信息与量子计算简明教程》第三章·量子纠缠状态及其应用 (上)

本专栏的主要内容是 《量子信息与量子计算简明教程》陈汉武 这本书的学习笔记及复习整理。

本章所涉及到的主要内容概览如下:

一、量子纠缠态

  关于量子纠缠态,如果阅读过第一章·基本概念(上),那么将会对其不再陌生。如果你是第一次看到的话,那么本文将在这里再次复习一下。量子纠缠状态指的是两个或多个量子系统之间的非定域、非经典的关联,是量子系统内各子系统或各自由度之间关联的力学属性。在某种程度上,以上表述还是有些难以理解,那么换种表述方式或许能帮助理解:如果qubit列的叠加态无法用个qubit的张量积表示,这种叠加态就称为量子纠缠态。例如叠加态 1 2 ∣ 01 ⟩ + 1 2 ∣ 10 ⟩ \frac{1}{\sqrt{2}}|01\rangle+\frac{1}{\sqrt{2}}|10\rangle 2 101+2 110无法写成两个qubit的直积(即张量积),称此叠加态为纠缠态。
  进一步,爱因斯坦的狂热粉丝贝尔为了支持爱因斯坦,推导了最终证明爱因斯坦错了的贝尔不等式,以及贝尔算符的全套本征态即贝尔态基:
∣ β 00 ⟩ = ∣ 00 ⟩ + ∣ 11 ⟩ 2 = 1 2 [ 1 0 0 1 ] , ∣ β 01 ⟩ = ∣ 01 ⟩ + ∣ 10 ⟩ 2 = 1 2 [ 0 1 1 0 ] \left|\beta_{00}\right\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l} 1 \\ 0 \\ 0 \\ 1 \end{array}\right], \quad\left|\beta_{01}\right\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l} 0 \\ 1 \\ 1 \\ 0 \end{array}\right] β00=2 00+11=2 11001,β01=2 01+10=2 10110 ∣ β 10 ⟩ = ∣ 00 ⟩ − ∣ 11 ⟩ 2 = 1 2 [ 1 0 0 − 1 ] , ∣ β 11 ⟩ = ∣ 01 ⟩ − ∣ 10 ⟩ 2 = 1 2 [ 0 1 − 1 0 ] \left|\beta_{10}\right\rangle=\frac{|00\rangle-|11\rangle}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left[\begin{array}{c} 1 \\ 0 \\ 0 \\ -1 \end{array}\right], \quad\left|\beta_{11}\right\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left[\begin{array}{c} 0 \\ 1 \\ -1 \\ 0 \end{array}\right] β10=2 0011=2 11001,β11=2 0110=2 10110不难看出,贝尔态基均为纠缠态。为了深入理解量子纠缠态的性质,不妨来看看如何构造量子纠缠态。
  以两量子直积态 ∣ 00 ⟩ |00\rangle 00出发,记为 ∣ 0 A 0 B ⟩ |0_A0_B\rangle 0A0B,构造纠缠态 ∣ 00 ⟩ + ∣ 11 ⟩ 2 \frac{|00\rangle+|11\rangle}{\sqrt{2}} 2 00+11。首先对 ∣ 0 A ⟩ |0_A\rangle 0A作用Hadamard门,得到状态
H ∣ 0 A 0 B ⟩ = ∣ 0 A ⟩ + ∣ 1 A ⟩ 2 ∣ 0 B ⟩ = ∣ 0 A 0 B ⟩ + ∣ 1 A 0 B ⟩ 2 H|0_A0_B\rangle=\frac{|0_A\rangle+|1_A\rangle}{\sqrt{2}} |0_B\rangle=\frac{|0_A0_B\rangle+|1_A0_B\rangle}{\sqrt{2}} H0A0B=2 0A+1A0B=2 0A0B+1A0B仔细观察可知,仅需要将 ∣ 1 A 0 B ⟩ |1_A0_B\rangle 1A0B变换为 ∣ 1 A 1 B ⟩ |1_A1_B\rangle 1A1B即可得到纠缠态。于是,有 ∣ 0 A 0 B ⟩ |0_A0_B\rangle 0A0B不发生变化, ∣ 1 A 0 B ⟩ |1_A0_B\rangle 1A0B变换为 ∣ 1 A 1 B ⟩ |1_A1_B\rangle 1A1B,根据我们在第二章·经典比特与量子比特中的讲解可知,以A为控制比特为,B为目标比特位,对 H ∣ 0 A 0 B ⟩ H|0_A0_B\rangle H0A0B作用 C N O T CNOT CNOT门即可完成目标纠缠态的构造:
C N O T ∣ 0 A 0 B ⟩ + ∣ 1 A 0 B ⟩ 2 = ∣ 0 A 0 B ⟩ + ∣ 1 A 1 B ⟩ 2 CNOT\frac{|0_A0_B\rangle+|1_A0_B\rangle}{\sqrt{2}}=\frac{|0_A0_B\rangle+|1_A1_B\rangle}{\sqrt{2}} CNOT2 0A0B+1A0B=2 0A0B+1A1B上述过程也可以在量子线路上进行实现,如下图所示。

测量得到的概率为:

  类似地,我们可以得到一个通用的 生成贝尔状态的量子状态变换回路: 回路的输入状态是 ∣ x y ⟩ |xy\rangle xyqubit对,对其中一个qubit做Hadamard变换,然后再与另一个qubit同时经过控制非门变换后得到的输出结果就是贝尔态基之一。如下图所示。

基底 ∣ 00 ⟩ , ∣ 01 ⟩ , ∣ 10 ⟩ , ∣ 11 ⟩ |00\rangle,|01\rangle,|10\rangle,|11\rangle 00,01,10,11的状态变换过程如下:

  (1) 对 ∣ 00 ⟩ , ∣ 01 ⟩ , ∣ 10 ⟩ , ∣ 11 ⟩ |00\rangle,|01\rangle,|10\rangle,|11\rangle 00,01,10,11做Hadamard变换
H ∣ 00 ⟩ = H ∣ 0 ⟩ ∣ 0 ⟩ = ( ∣ 0 ⟩ + ∣ 1 ⟩ 2 ) ∣ 0 ⟩ = ∣ 00 ⟩ + ∣ 10 ⟩ 2 H ∣ 01 ⟩ = H ∣ 0 ⟩ ∣ 1 ⟩ = ( ∣ 0 ⟩ + ∣ 1 ⟩ 2 ) ∣ 1 ⟩ = ∣ 01 ⟩ + ∣ 11 ⟩ 2 H ∣ 10 ⟩ = H ∣ 1 ⟩ ∣ 0 ⟩ = ( ∣ 0 ⟩ − ∣ 1 ⟩ 2 ) ∣ 0 ⟩ = ∣ 00 ⟩ − ∣ 10 ⟩ 2 H ∣ 11 ⟩ = H ∣ 1 ⟩ ∣ 1 ⟩ = ( ∣ 0 ⟩ − ∣ 1 ⟩ 2 ) ∣ 1 ⟩ = ∣ 01 ⟩ − ∣ 11 ⟩ 2 \begin{aligned} &H|00\rangle=H|0\rangle|0\rangle=\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)|0\rangle=\frac{|00\rangle+|10\rangle}{\sqrt{2}} \\ &H|01\rangle=H|0\rangle|1\rangle=\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)|1\rangle=\frac{|01\rangle+|11\rangle}{\sqrt{2}} \\ &H|10\rangle=H|1\rangle|0\rangle=\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)|0\rangle=\frac{|00\rangle-|10\rangle}{\sqrt{2}} \\ &H|11\rangle=H|1\rangle|1\rangle=\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)|1\rangle=\frac{|01\rangle-|11\rangle}{\sqrt{2}} \end{aligned} H00=H00=(2 0+1)0=2 00+10H01=H01=(2 0+1)1=2 01+11H10=H10=(2 01)0=2 0010H11=H11=(2 01)1=2 0111  (2) 对上述四个叠加态分别作CNOT变换,得到贝尔态
∣ β 00 ⟩ = ∣ 00 ⟩ + ∣ 11 ⟩ 2 , ∣ β 01 ⟩ = ∣ 01 ⟩ + ∣ 10 ⟩ 2 ∣ β 10 ⟩ = ∣ 00 ⟩ − ∣ 11 ⟩ 2 , ∣ β 11 ⟩ = ∣ 01 ⟩ − ∣ 10 ⟩ 2 \begin{aligned} &\left|\beta_{00}\right\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}, \quad\left|\beta_{01}\right\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}} \\ &\left|\beta_{10}\right\rangle=\frac{|00\rangle-|11\rangle}{\sqrt{2}}, \quad\left|\beta_{11}\right\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}} \end{aligned} β00=2 00+11,β01=2 01+10β10=2 0011,β11=2 0110通过以上过程,学习了纠缠状态的生成。接下来,看一看测定一个纠缠状态时,其呈现出的性质,以贝尔状态 ∣ β 00 ⟩ |\beta_{00}\rangle β00为例。通过前几章学习的知识,在对 ∣ β 00 ⟩ |\beta_{00}\rangle β00进行测定时,不难计算各个qubit的概率为
∣ ⟨ 00 ∣ β 00 ⟩ ∣ 2 = ∣ ⟨ 00 ∣ 00 ⟩ + ⟨ 00 ∣ 11 ⟩ 2 ∣ 2 = 1 2 ∣ ⟨ 01 ∣ β 00 ⟩ ∣ 2 = ∣ ⟨ 01 ∣ 00 ⟩ + ⟨ 01 ∣ 11 ⟩ 2 ∣ 2 = 0 ∣ ⟨ 10 ∣ β 00 ⟩ ∣ 2 = ∣ ⟨ 10 ∣ 00 ⟩ + ⟨ 10 ∣ 11 ⟩ 2 ∣ 2 = 0 ∣ ⟨ 11 ∣ β 00 ⟩ ∣ 2 = ∣ ⟨ 11 ∣ 00 ⟩ + ⟨ 11 ∣ 11 ⟩ 2 ∣ 2 = 1 2 \begin{aligned} &\left|\left\langle 00 \mid \beta_{00}\right\rangle\right|^{2}=\left|\frac{\langle 00 \mid 00\rangle+\langle 00 \mid 11\rangle}{\sqrt{2}}\right|^{2}=\frac{1}{2} \\ &\left|\left\langle 01 \mid \beta_{00}\right\rangle\right|^{2}=\left|\frac{\langle 01 \mid 00\rangle+\langle 01 \mid 11\rangle}{\sqrt{2}}\right|^{2}=0 \\ &\left|\left\langle 10 \mid \beta_{00}\right\rangle\right|^{2}=\left|\frac{\langle 10 \mid 00\rangle+\langle 10 \mid 11\rangle}{\sqrt{2}}\right|^{2}=0 \\ &\left|\left\langle 11 \mid \beta_{00}\right\rangle\right|^{2}=\left|\frac{\langle 11 \mid 00\rangle+\langle 11 \mid 11\rangle}{\sqrt{2}}\right|^{2}=\frac{1}{2} \end{aligned} 00β002=2 0000+00112=2101β002=2 0100+01112=010β002=2 1000+10112=011β002=2 1100+11112=21  从上述结果中可以看出, ∣ β 00 ⟩ |\beta_{00}\rangle β00的测定结果:当第一位的测定结果为0时,第二位必定为0;当第一位的测定结果为1时,第二位必定为1。余下贝尔状态测定结果与此类似,自己动手算上一遍,印象更加深刻!!!

二、量子高密度编码

  量子纠缠态能够用来实现量子高密度编码,进而实现 1 个 qubit 传送 2 bit 的信息。考虑 Alice 通过 1 个 qubit 向 Bob 传送 2 bit 的经典信息。在实现通信之前,让 Alice 和 Bob 各自拥有贝尔状态:
∣ β 00 ⟩ = ∣ 0 ⟩ A ∣ 0 ⟩ B + ∣ 1 ⟩ A ∣ 1 ⟩ B 2 \left|\beta_{00}\right\rangle=\frac{|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}}{\sqrt{2}} β00=2 0A0B+1A1B其中, ∣ ⋅ ⟩ A |\cdot\rangle_A A表示 Alice 拥有的 qubit, ∣ ⋅ ⟩ B |\cdot\rangle_B B表示 Bob 拥有的 qubit。在 Alice 和 Bob 之间共同拥有纠缠状态之后,Alice 对应于自己想要发送的信息,在拥有的 qubit 上实施如下的操作:

  Alice 在对拥有的 qubit 实施操作以后传送给 Bob,此时 Bob 拥有的 qubit 对的状态,依赖于发送的信息,取不同的贝尔状态。已知贝尔状态构成正规直交基底,因此通过贝尔状态的测定,Bob 能够百分之百的确认 qubit 对的状态是哪一个,从而获取 Alice 发送的信息。

对于测定的结果采用上述方法对信息实施恢复操作即可。由此实现一个qubit传送两位bit值的高密度编码。
  比如将 bit 列 10 从 Alice 传送到 Bob。假设 Alice 将自己的 qubit 施加 Z-Gate 演算后的结果传送给 Bob,此时 Bob 从纠缠状态里获得的 2 位 qubit 的状态为:
∣ β 10 ⟩ = ( Z ∣ 0 ⟩ A ) ∣ 0 ⟩ B + ( Z ∣ 1 ⟩ A ) ∣ 1 ⟩ B 2 = ∣ 0 ⟩ A ∣ 0 ⟩ B − ∣ 1 ⟩ A ∣ 1 ⟩ B 2 \left|\beta_{10}\right\rangle=\frac{\left(Z|0\rangle_{A}\right)|0\rangle_{B}+\left(Z|1\rangle_{A}\right)|1\rangle_{B}}{\sqrt{2}}=\frac{|0\rangle_{A}|0\rangle_{B}-|1\rangle_{A}|1\rangle_{B}}{\sqrt{2}} β10=2 (Z0A)0B+(Z1A)1B=2 0A0B1A1B由于 ∣ ⟨ β 10 ∣ β 10 ⟩ ∣ 2 = 1 \left|\left\langle\beta_{10} \mid \beta_{10}\right\rangle\right|^{2}=1 β10β102=1,于是能够判断测定状态的结果为 ∣ β 10 ⟩ \left|\beta_{10}\right\rangle β10,那么传送的信息为 bit 列 10。

三、采用量子比特的通信界限

  定理 A 有 n 个 bit 的信息要传送给 B。假定 A 和 B 不共有纠缠状态,且无论是从 A 到 B 或是从 B 到 A,都可以无误地传送 qubit。此时设从 A 传送到 B 的 qubit 总数为 n A B n_{AB} nAB,从 B 传送到 A 的 qubit 总数为 n B A n_{BA} nBA,则 B 能够正确地获得 A 传送的 n 个 bit 的信息的充分必要条件是:
n A B ≥ [ n 2 ] ,  且  n A B + n B A ≥ n n_{A B} \geq\left[\frac{n}{2}\right], \text { 且 } n_{A B}+n_{B A} \geq n nAB[2n],  nAB+nBAn结论:
  (1) n B A = 0 n_{BA}=0 nBA=0,即从B到A不可送信的场合,此时 n A B ≥ n n_{AB} \geq n nABn。意味着传送 n 个 bit 的信息至少需要 n 个 qubit,换个角度理解,也就是说此时的 qubit 与经典状态差不多,1 个 qubit 只能传送 1 个 bit 的信息,与其能表示无限多状态的性质无关。
  (2) 使用纠缠状态,传送 n 个 bit 的信息也至少需要传送 [ n / 2 ] [n / 2] [n/2]个 qubit。采用量子高密度编码,用 [ n / 2 ] [n / 2] [n/2]个 qubit 可以传送 n 个 bit 的信息。
  假设 n A B n_{AB} nAB n B A n_{BA} nBA满足上述定理,从 A 传送到 B 少于 n A B n_{AB} nAB个 qubit 的信息,从 B 传送到 A 少于 n B A n_{BA} nBA个 qubit 的信息。从 A 到 B 传送 n 个 bit 的信息时,可采用如下协议:

  (1) n B A = 0 n_{BA}=0 nBA=0,即从 B 到 A 不可送信的场合,此时 n A B ≥ n n_{AB} \geq n nABn。如果把 bit 0 编码成 ∣ 0 ⟩ |0\rangle 0,把 bit 1 编码成 ∣ 1 ⟩ |1\rangle 1并从 A 向 B 传送 n 个 qubit,那么 B 能够获取从 A 传送的 n 个 bit 的信息。
  (2) [ n / 2 ] ≤ n A B ≤ n [n / 2] \leq n_{A B} \leq n [n/2]nABn时,首先将B做成 n − n A B n-n_{AB} nnAB对的贝尔状态,且把每一个贝尔状态对的一半 qubit 传送给 A,此时从 B 向 A 传送的 qubit 数为 n − n A B ( ≤ n B A ) n-n_{AB}(\leq n_{BA}) nnAB(nBA)个。由此可知,A 和 B 共同拥有 ( n − n A B ) \left(n-n_{A B}\right) (nnAB)对的贝尔状态,因此在执行 ( n − n A B ) \left(n-n_{A B}\right) (nnAB)次量子高密度编码后,若 A 向 B 传送 ( n − n A B ) \left(n-n_{A B}\right) (nnAB)个 qubit,就能够传送 2 ( n − n A B ) 2\left(n-n_{A B}\right) 2(nnAB)个 bit 位信息(上述结论(2))。在这之后,同结论(1)一样,使用 n A B − ( n − n A B ) = 2 n A B − n n_{A B}-\left(n-n_{A B}\right)=2 n_{A B}-n nAB(nnAB)=2nABn个 qubit,A 将剩余的 2 n A B − n 2 n_{A B}-n 2nABn个 bit 传送给 B 即可。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值