本专栏的主要内容是 《量子信息与量子计算简明教程》陈汉武 这本书的学习笔记及复习整理。
本章所涉及到的主要内容概览如下:

一、量子纠缠态
关于量子纠缠态,如果阅读过第一章·基本概念(上),那么将会对其不再陌生。如果你是第一次看到的话,那么本文将在这里再次复习一下。量子纠缠状态指的是两个或多个量子系统之间的非定域、非经典的关联,是量子系统内各子系统或各自由度之间关联的力学属性。在某种程度上,以上表述还是有些难以理解,那么换种表述方式或许能帮助理解:如果qubit列的叠加态无法用个qubit的张量积表示,这种叠加态就称为量子纠缠态。例如叠加态
1
2
∣
01
⟩
+
1
2
∣
10
⟩
\frac{1}{\sqrt{2}}|01\rangle+\frac{1}{\sqrt{2}}|10\rangle
21∣01⟩+21∣10⟩无法写成两个qubit的直积(即张量积),称此叠加态为纠缠态。
进一步,爱因斯坦的狂热粉丝贝尔为了支持爱因斯坦,推导了最终证明爱因斯坦错了的贝尔不等式,以及贝尔算符的全套本征态即贝尔态基:
∣
β
00
⟩
=
∣
00
⟩
+
∣
11
⟩
2
=
1
2
[
1
0
0
1
]
,
∣
β
01
⟩
=
∣
01
⟩
+
∣
10
⟩
2
=
1
2
[
0
1
1
0
]
\left|\beta_{00}\right\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l} 1 \\ 0 \\ 0 \\ 1 \end{array}\right], \quad\left|\beta_{01}\right\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l} 0 \\ 1 \\ 1 \\ 0 \end{array}\right]
∣β00⟩=2∣00⟩+∣11⟩=21⎣⎢⎢⎡1001⎦⎥⎥⎤,∣β01⟩=2∣01⟩+∣10⟩=21⎣⎢⎢⎡0110⎦⎥⎥⎤
∣
β
10
⟩
=
∣
00
⟩
−
∣
11
⟩
2
=
1
2
[
1
0
0
−
1
]
,
∣
β
11
⟩
=
∣
01
⟩
−
∣
10
⟩
2
=
1
2
[
0
1
−
1
0
]
\left|\beta_{10}\right\rangle=\frac{|00\rangle-|11\rangle}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left[\begin{array}{c} 1 \\ 0 \\ 0 \\ -1 \end{array}\right], \quad\left|\beta_{11}\right\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left[\begin{array}{c} 0 \\ 1 \\ -1 \\ 0 \end{array}\right]
∣β10⟩=2∣00⟩−∣11⟩=21⎣⎢⎢⎡100−1⎦⎥⎥⎤,∣β11⟩=2∣01⟩−∣10⟩=21⎣⎢⎢⎡01−10⎦⎥⎥⎤不难看出,贝尔态基均为纠缠态。为了深入理解量子纠缠态的性质,不妨来看看如何构造量子纠缠态。
以两量子直积态
∣
00
⟩
|00\rangle
∣00⟩出发,记为
∣
0
A
0
B
⟩
|0_A0_B\rangle
∣0A0B⟩,构造纠缠态
∣
00
⟩
+
∣
11
⟩
2
\frac{|00\rangle+|11\rangle}{\sqrt{2}}
2∣00⟩+∣11⟩。首先对
∣
0
A
⟩
|0_A\rangle
∣0A⟩作用Hadamard门,得到状态
H
∣
0
A
0
B
⟩
=
∣
0
A
⟩
+
∣
1
A
⟩
2
∣
0
B
⟩
=
∣
0
A
0
B
⟩
+
∣
1
A
0
B
⟩
2
H|0_A0_B\rangle=\frac{|0_A\rangle+|1_A\rangle}{\sqrt{2}} |0_B\rangle=\frac{|0_A0_B\rangle+|1_A0_B\rangle}{\sqrt{2}}
H∣0A0B⟩=2∣0A⟩+∣1A⟩∣0B⟩=2∣0A0B⟩+∣1A0B⟩仔细观察可知,仅需要将
∣
1
A
0
B
⟩
|1_A0_B\rangle
∣1A0B⟩变换为
∣
1
A
1
B
⟩
|1_A1_B\rangle
∣1A1B⟩即可得到纠缠态。于是,有
∣
0
A
0
B
⟩
|0_A0_B\rangle
∣0A0B⟩不发生变化,
∣
1
A
0
B
⟩
|1_A0_B\rangle
∣1A0B⟩变换为
∣
1
A
1
B
⟩
|1_A1_B\rangle
∣1A1B⟩,根据我们在第二章·经典比特与量子比特中的讲解可知,以A为控制比特为,B为目标比特位,对
H
∣
0
A
0
B
⟩
H|0_A0_B\rangle
H∣0A0B⟩作用
C
N
O
T
CNOT
CNOT门即可完成目标纠缠态的构造:
C
N
O
T
∣
0
A
0
B
⟩
+
∣
1
A
0
B
⟩
2
=
∣
0
A
0
B
⟩
+
∣
1
A
1
B
⟩
2
CNOT\frac{|0_A0_B\rangle+|1_A0_B\rangle}{\sqrt{2}}=\frac{|0_A0_B\rangle+|1_A1_B\rangle}{\sqrt{2}}
CNOT2∣0A0B⟩+∣1A0B⟩=2∣0A0B⟩+∣1A1B⟩上述过程也可以在量子线路上进行实现,如下图所示。

测量得到的概率为:

类似地,我们可以得到一个通用的 生成贝尔状态的量子状态变换回路: 回路的输入状态是 ∣ x y ⟩ |xy\rangle ∣xy⟩qubit对,对其中一个qubit做Hadamard变换,然后再与另一个qubit同时经过控制非门变换后得到的输出结果就是贝尔态基之一。如下图所示。

基底 ∣ 00 ⟩ , ∣ 01 ⟩ , ∣ 10 ⟩ , ∣ 11 ⟩ |00\rangle,|01\rangle,|10\rangle,|11\rangle ∣00⟩,∣01⟩,∣10⟩,∣11⟩的状态变换过程如下:
(1) 对
∣
00
⟩
,
∣
01
⟩
,
∣
10
⟩
,
∣
11
⟩
|00\rangle,|01\rangle,|10\rangle,|11\rangle
∣00⟩,∣01⟩,∣10⟩,∣11⟩做Hadamard变换
H
∣
00
⟩
=
H
∣
0
⟩
∣
0
⟩
=
(
∣
0
⟩
+
∣
1
⟩
2
)
∣
0
⟩
=
∣
00
⟩
+
∣
10
⟩
2
H
∣
01
⟩
=
H
∣
0
⟩
∣
1
⟩
=
(
∣
0
⟩
+
∣
1
⟩
2
)
∣
1
⟩
=
∣
01
⟩
+
∣
11
⟩
2
H
∣
10
⟩
=
H
∣
1
⟩
∣
0
⟩
=
(
∣
0
⟩
−
∣
1
⟩
2
)
∣
0
⟩
=
∣
00
⟩
−
∣
10
⟩
2
H
∣
11
⟩
=
H
∣
1
⟩
∣
1
⟩
=
(
∣
0
⟩
−
∣
1
⟩
2
)
∣
1
⟩
=
∣
01
⟩
−
∣
11
⟩
2
\begin{aligned} &H|00\rangle=H|0\rangle|0\rangle=\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)|0\rangle=\frac{|00\rangle+|10\rangle}{\sqrt{2}} \\ &H|01\rangle=H|0\rangle|1\rangle=\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)|1\rangle=\frac{|01\rangle+|11\rangle}{\sqrt{2}} \\ &H|10\rangle=H|1\rangle|0\rangle=\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)|0\rangle=\frac{|00\rangle-|10\rangle}{\sqrt{2}} \\ &H|11\rangle=H|1\rangle|1\rangle=\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)|1\rangle=\frac{|01\rangle-|11\rangle}{\sqrt{2}} \end{aligned}
H∣00⟩=H∣0⟩∣0⟩=(2∣0⟩+∣1⟩)∣0⟩=2∣00⟩+∣10⟩H∣01⟩=H∣0⟩∣1⟩=(2∣0⟩+∣1⟩)∣1⟩=2∣01⟩+∣11⟩H∣10⟩=H∣1⟩∣0⟩=(2∣0⟩−∣1⟩)∣0⟩=2∣00⟩−∣10⟩H∣11⟩=H∣1⟩∣1⟩=(2∣0⟩−∣1⟩)∣1⟩=2∣01⟩−∣11⟩ (2) 对上述四个叠加态分别作CNOT变换,得到贝尔态
∣
β
00
⟩
=
∣
00
⟩
+
∣
11
⟩
2
,
∣
β
01
⟩
=
∣
01
⟩
+
∣
10
⟩
2
∣
β
10
⟩
=
∣
00
⟩
−
∣
11
⟩
2
,
∣
β
11
⟩
=
∣
01
⟩
−
∣
10
⟩
2
\begin{aligned} &\left|\beta_{00}\right\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}, \quad\left|\beta_{01}\right\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}} \\ &\left|\beta_{10}\right\rangle=\frac{|00\rangle-|11\rangle}{\sqrt{2}}, \quad\left|\beta_{11}\right\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}} \end{aligned}
∣β00⟩=2∣00⟩+∣11⟩,∣β01⟩=2∣01⟩+∣10⟩∣β10⟩=2∣00⟩−∣11⟩,∣β11⟩=2∣01⟩−∣10⟩通过以上过程,学习了纠缠状态的生成。接下来,看一看测定一个纠缠状态时,其呈现出的性质,以贝尔状态
∣
β
00
⟩
|\beta_{00}\rangle
∣β00⟩为例。通过前几章学习的知识,在对
∣
β
00
⟩
|\beta_{00}\rangle
∣β00⟩进行测定时,不难计算各个qubit的概率为
∣
⟨
00
∣
β
00
⟩
∣
2
=
∣
⟨
00
∣
00
⟩
+
⟨
00
∣
11
⟩
2
∣
2
=
1
2
∣
⟨
01
∣
β
00
⟩
∣
2
=
∣
⟨
01
∣
00
⟩
+
⟨
01
∣
11
⟩
2
∣
2
=
0
∣
⟨
10
∣
β
00
⟩
∣
2
=
∣
⟨
10
∣
00
⟩
+
⟨
10
∣
11
⟩
2
∣
2
=
0
∣
⟨
11
∣
β
00
⟩
∣
2
=
∣
⟨
11
∣
00
⟩
+
⟨
11
∣
11
⟩
2
∣
2
=
1
2
\begin{aligned} &\left|\left\langle 00 \mid \beta_{00}\right\rangle\right|^{2}=\left|\frac{\langle 00 \mid 00\rangle+\langle 00 \mid 11\rangle}{\sqrt{2}}\right|^{2}=\frac{1}{2} \\ &\left|\left\langle 01 \mid \beta_{00}\right\rangle\right|^{2}=\left|\frac{\langle 01 \mid 00\rangle+\langle 01 \mid 11\rangle}{\sqrt{2}}\right|^{2}=0 \\ &\left|\left\langle 10 \mid \beta_{00}\right\rangle\right|^{2}=\left|\frac{\langle 10 \mid 00\rangle+\langle 10 \mid 11\rangle}{\sqrt{2}}\right|^{2}=0 \\ &\left|\left\langle 11 \mid \beta_{00}\right\rangle\right|^{2}=\left|\frac{\langle 11 \mid 00\rangle+\langle 11 \mid 11\rangle}{\sqrt{2}}\right|^{2}=\frac{1}{2} \end{aligned}
∣⟨00∣β00⟩∣2=∣∣∣∣2⟨00∣00⟩+⟨00∣11⟩∣∣∣∣2=21∣⟨01∣β00⟩∣2=∣∣∣∣2⟨01∣00⟩+⟨01∣11⟩∣∣∣∣2=0∣⟨10∣β00⟩∣2=∣∣∣∣2⟨10∣00⟩+⟨10∣11⟩∣∣∣∣2=0∣⟨11∣β00⟩∣2=∣∣∣∣2⟨11∣00⟩+⟨11∣11⟩∣∣∣∣2=21 从上述结果中可以看出,
∣
β
00
⟩
|\beta_{00}\rangle
∣β00⟩的测定结果:当第一位的测定结果为0时,第二位必定为0;当第一位的测定结果为1时,第二位必定为1。余下贝尔状态测定结果与此类似,自己动手算上一遍,印象更加深刻!!!
二、量子高密度编码
量子纠缠态能够用来实现量子高密度编码,进而实现 1 个 qubit 传送 2 bit 的信息。考虑 Alice 通过 1 个 qubit 向 Bob 传送 2 bit 的经典信息。在实现通信之前,让 Alice 和 Bob 各自拥有贝尔状态:
∣
β
00
⟩
=
∣
0
⟩
A
∣
0
⟩
B
+
∣
1
⟩
A
∣
1
⟩
B
2
\left|\beta_{00}\right\rangle=\frac{|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}}{\sqrt{2}}
∣β00⟩=2∣0⟩A∣0⟩B+∣1⟩A∣1⟩B其中,
∣
⋅
⟩
A
|\cdot\rangle_A
∣⋅⟩A表示 Alice 拥有的 qubit,
∣
⋅
⟩
B
|\cdot\rangle_B
∣⋅⟩B表示 Bob 拥有的 qubit。在 Alice 和 Bob 之间共同拥有纠缠状态之后,Alice 对应于自己想要发送的信息,在拥有的 qubit 上实施如下的操作:
Alice 在对拥有的 qubit 实施操作以后传送给 Bob,此时 Bob 拥有的 qubit 对的状态,依赖于发送的信息,取不同的贝尔状态。已知贝尔状态构成正规直交基底,因此通过贝尔状态的测定,Bob 能够百分之百的确认 qubit 对的状态是哪一个,从而获取 Alice 发送的信息。
对于测定的结果采用上述方法对信息实施恢复操作即可。由此实现一个qubit传送两位bit值的高密度编码。
比如将 bit 列 10 从 Alice 传送到 Bob。假设 Alice 将自己的 qubit 施加 Z-Gate 演算后的结果传送给 Bob,此时 Bob 从纠缠状态里获得的 2 位 qubit 的状态为:
∣
β
10
⟩
=
(
Z
∣
0
⟩
A
)
∣
0
⟩
B
+
(
Z
∣
1
⟩
A
)
∣
1
⟩
B
2
=
∣
0
⟩
A
∣
0
⟩
B
−
∣
1
⟩
A
∣
1
⟩
B
2
\left|\beta_{10}\right\rangle=\frac{\left(Z|0\rangle_{A}\right)|0\rangle_{B}+\left(Z|1\rangle_{A}\right)|1\rangle_{B}}{\sqrt{2}}=\frac{|0\rangle_{A}|0\rangle_{B}-|1\rangle_{A}|1\rangle_{B}}{\sqrt{2}}
∣β10⟩=2(Z∣0⟩A)∣0⟩B+(Z∣1⟩A)∣1⟩B=2∣0⟩A∣0⟩B−∣1⟩A∣1⟩B由于
∣
⟨
β
10
∣
β
10
⟩
∣
2
=
1
\left|\left\langle\beta_{10} \mid \beta_{10}\right\rangle\right|^{2}=1
∣⟨β10∣β10⟩∣2=1,于是能够判断测定状态的结果为
∣
β
10
⟩
\left|\beta_{10}\right\rangle
∣β10⟩,那么传送的信息为 bit 列 10。
三、采用量子比特的通信界限
定理 A 有 n 个 bit 的信息要传送给 B。假定 A 和 B 不共有纠缠状态,且无论是从 A 到 B 或是从 B 到 A,都可以无误地传送 qubit。此时设从 A 传送到 B 的 qubit 总数为
n
A
B
n_{AB}
nAB,从 B 传送到 A 的 qubit 总数为
n
B
A
n_{BA}
nBA,则 B 能够正确地获得 A 传送的 n 个 bit 的信息的充分必要条件是:
n
A
B
≥
[
n
2
]
,
且
n
A
B
+
n
B
A
≥
n
n_{A B} \geq\left[\frac{n}{2}\right], \text { 且 } n_{A B}+n_{B A} \geq n
nAB≥[2n], 且 nAB+nBA≥n结论:
(1)
n
B
A
=
0
n_{BA}=0
nBA=0,即从B到A不可送信的场合,此时
n
A
B
≥
n
n_{AB} \geq n
nAB≥n。意味着传送 n 个 bit 的信息至少需要 n 个 qubit,换个角度理解,也就是说此时的 qubit 与经典状态差不多,1 个 qubit 只能传送 1 个 bit 的信息,与其能表示无限多状态的性质无关。
(2) 使用纠缠状态,传送 n 个 bit 的信息也至少需要传送
[
n
/
2
]
[n / 2]
[n/2]个 qubit。采用量子高密度编码,用
[
n
/
2
]
[n / 2]
[n/2]个 qubit 可以传送 n 个 bit 的信息。
假设
n
A
B
n_{AB}
nAB和
n
B
A
n_{BA}
nBA满足上述定理,从 A 传送到 B 少于
n
A
B
n_{AB}
nAB个 qubit 的信息,从 B 传送到 A 少于
n
B
A
n_{BA}
nBA个 qubit 的信息。从 A 到 B 传送 n 个 bit 的信息时,可采用如下协议:
(1)
n
B
A
=
0
n_{BA}=0
nBA=0,即从 B 到 A 不可送信的场合,此时
n
A
B
≥
n
n_{AB} \geq n
nAB≥n。如果把 bit 0 编码成
∣
0
⟩
|0\rangle
∣0⟩,把 bit 1 编码成
∣
1
⟩
|1\rangle
∣1⟩并从 A 向 B 传送 n 个 qubit,那么 B 能够获取从 A 传送的 n 个 bit 的信息。
(2)
[
n
/
2
]
≤
n
A
B
≤
n
[n / 2] \leq n_{A B} \leq n
[n/2]≤nAB≤n时,首先将B做成
n
−
n
A
B
n-n_{AB}
n−nAB对的贝尔状态,且把每一个贝尔状态对的一半 qubit 传送给 A,此时从 B 向 A 传送的 qubit 数为
n
−
n
A
B
(
≤
n
B
A
)
n-n_{AB}(\leq n_{BA})
n−nAB(≤nBA)个。由此可知,A 和 B 共同拥有
(
n
−
n
A
B
)
\left(n-n_{A B}\right)
(n−nAB)对的贝尔状态,因此在执行
(
n
−
n
A
B
)
\left(n-n_{A B}\right)
(n−nAB)次量子高密度编码后,若 A 向 B 传送
(
n
−
n
A
B
)
\left(n-n_{A B}\right)
(n−nAB)个 qubit,就能够传送
2
(
n
−
n
A
B
)
2\left(n-n_{A B}\right)
2(n−nAB)个 bit 位信息(上述结论(2))。在这之后,同结论(1)一样,使用
n
A
B
−
(
n
−
n
A
B
)
=
2
n
A
B
−
n
n_{A B}-\left(n-n_{A B}\right)=2 n_{A B}-n
nAB−(n−nAB)=2nAB−n个 qubit,A 将剩余的
2
n
A
B
−
n
2 n_{A B}-n
2nAB−n个 bit 传送给 B 即可。