数据分析项目实战:电影数据分析

本文基于kaggle的TMDB 5000 Movie Dataset,探讨了电影类型随时间的变化、类型与利润的关系、Universal与Paramount的发行对比、改编与原创电影对比以及电影时长与票房评分的关系。通过数据清洗、分析和可视化,揭示了电影行业的关键洞察。
摘要由CSDN通过智能技术生成
一、项目背景

电影公司制作一部新电影推向市场时,要想获得成功,通常要了解电影市场趋势,观众 喜好的电影类型,电影的发行情况,改编电影和原创电影的收益情况,以及观众喜欢什么样的内容

本案例来源于 kaggle 上的 TMDB 5000 Movie Dataset 数据集,为了探讨电影数据可视化, 为电影的制作提供数据支持,主要研究以下几个问题:

(1)电影类型如何随着时间的推移发生变化的?

(2)电影类型与利润的关系?

(3)Universal 和 Paramount 两家影视公司的对比情况如何?

(4)改编电影和原创电影的对比情况如何?

(5)电影时长与电影票房及评分的关系?

(6)分析电影关键字

二、理解数据

**1、采集数据 **

下载数据集:https://www.kaggle.com/tmdb/tmdb-movie-metadata

2、导入数据,并进行查看

代码实现:

import pandas as pd
import json

# =============================================加载数据===================================

# 加载数据 --credits
credits = pd.read_csv('./tmdb_5000_credits.csv')
print('credits:\n', credits)
print('*' * 100)
print('credits:\n', credits.columns)
print('*' * 100)
print('credits:\n', credits.info())
print('*' * 100)

# 加载数据
movies = pd.read_csv('./tmdb_5000_movies.csv')
print('movies:\n', movies)
print('#' * 100)
print('movies:\n', movies.columns)
print('#' * 100)
print('movies:\n', movies.info())
print('#' * 100)

3、数据说明

电影数据说明表

列名 说明
id 标识号
imdb_id IMDB 标识号
popularity 在 Movie Database 上的相对页面查看次数
budget 预算(美元)
revenue 收入(美元)
original_title 电影名称
cast 演员列表,按
homepage 电影首页的 URL
director 导演列表,按
tagline 电影的标语
keywords 与电影相关的关键字,按
overview 剧情摘要
runtime 电影时长
genres 风格列表,按
production_companies 制作公司列表,按
release_date 首次上映日期
vote_count 评论次数
vote_average 平均评分
release_year 发行年份
三、数据清洗

1、合并数据集

先将 credits 数据集和 movie 数据集中的数据合并在一起,再查看合并后的数据集信息

代码实现:

# (1)合并数据
# print(credits['crew'])
# credits 中存在 movie_id  和 title
# movies 中存在 id 和 title
# 将 credits 中的 movie_id 修改为 id
credits.rename(columns={
   'movie_id': 'id'}, inplace=True)
# print('credits的列索引:\n', credits.columns)
# 主键合并 ---on id 和 title
all_data = pd.merge(left=credits, right=movies, on=['id', 'title'], how='outer')
print('all_data:\n', all_data)
print('all_data:\n', all_data.columns)
print('all_data:\n', all_data.dtypes)

2、选取子集

由于数据集中包含的信息过多,其中部分数据并不是我们研究的重点,所以从中选取我 们需要的数据:

代码实现:

# 筛选特征
all_data = all_data['original_title', 'crew', 'release_date', 'genres', 'keywords',
                    'production_companies', 'production_countries', 'revenue',
                    'budget', 'runtime', 'vote_average']
print('all_data的列索引:\n', all_data.columns)
print('all_data的形状:\n', all_data.shape)

由于后面的数据分析涉及到电影类型的利润计算,先求出每部电影的利润,并在数据集 data 中增加 profit 数据列

代码实现:

# 增加利润
all_data['profit'] = all_data['revenue'] - all_data['budget']
print('all_data的列索引:\n', all_data)
print('all_data的形状:\n', all_data)

3、缺失值处理

代码实现:

# 检测缺失值
# pd.isnull + sum
res_null = pd.isnull(all_data).sum()
print('缺失值检测结果:\n', res_null)

# 检测到 release_date 存在一个缺失值 ---针对方式:填充,查找具体的电影名称,根据电影名称查找上映时间
# a、确定bool数组
mask = all_data.loc[:, 'release_date'].isnull()
# b、根据bool数组来获取缺失值位置的电影名称
movie_name = all_data.loc[mask, 'title']
print('缺失上映日期的电影名称为:\n', movie_name)
# 缺失上映日期的电影名称为:
#  4553    America Is Still the Place
# Name: title, dtype: object

# 通过上网查询该电影的上映日期为:2014-06-01
# c 、 填充
all_data.loc[mask, 'release_date'] = '2014-06-01'

# 将 release_date 转化为 pandas支持的时间序列
all_data.loc[:, 'release_date'] = pd.to_datetime(all_data.loc[:, 'release_date'])

# 获取 发行年份
all_data.loc[:, 'release_year'] = all_data.loc[:, 'release_date'].dt.year

通过上面的结果信息可以知道:整个数据集缺失的数据比较少。 其中 release_date(首次上映日期)缺失 1 个数据,可以通过网上查询补齐这个数据,填补 release_date(首次上映日期)数据

4、数据格式转换

genres 列数据处理:

代码实现:

# 查看电影风格数据
print('电影风格:\n', all_data.loc[:, 'genres'])  # json数据类型

# json.loads # 可以将json转化为python类型
# 将 all_data.loc[:, 'genres'] 由 json类型转化为 python类型
all_data.loc[:, 'genres'] = all_data.loc[:, 'genres'].transform(json.loads)

# 构建所有的电影的类型
all_movie_type = set()


# 定义一个函数,来提取电影类型
def get_movie_type(val):
    """
    获取电影类型
    :param val: 数据
    :return: 提取之后的电影类型数据
    """
    # 构建一个空列表,用来存储每一个电影的电影类型
    type_list = []
    # 
一、数据分析项目介绍 1. 项目所需的模块库介绍 pandas用法: 需要导入以下模块 import numpy as np import pandas as pd from pandas import Series, Dataframe 2.项目背景介绍 互联网电影资料库(Internet Movie Database,简称IMDB)是一个关于电影演员、电影、电视节目、电视明星和电影制作的在线数据库。电影作为艺术和娱乐载体已成为我们生活中的一部分,作为电影爱好者之一,希望通过分析了解电影市场大体情况,以便于以后选择电影观看。 使用的数据是IMDB美国票房排名前1000的电影数据,数据包含了电影名称,票房金额,上映年份,演职人员,IMDB评分,电影类型等信息,数据中的很多电影大家也比较熟悉。相信不少人都有这样的经历,当想要看一部电影的时候,会去百度一下谁是导演,谁是主演。如果导演是克里斯托弗•诺兰,心里已经给电影打了个8分以上的评分了。而阿汤哥的动作片,预期也都能肾上腺素飙升。对于已上映的电影,不少人会去豆瓣搜索现时的评分,或是前作的评价,若是豆瓣高分、高评论数,也会按奈不住去蹭下热度。如果要去电影院观看的话,想必不少人会更倾向选择动作片或者科幻大片这类特效丰富,影音冲击强烈的电影。近几年特效技术和3D动画的日渐成熟,影院观影已经是越来越多人的第一选择。 IMDB的资料中包括了影片的众多信息、演员、片长、内容介绍、分级、评论等。对于电影的评分目前使用最多的就是IMDB评分。 截至2018年6月21日,IMDB共收录了4,734,693部作品资料以及8,702,001名人物资料。 3.项目所需数据介绍 数据的属性包括:电影名称、评论数、评分、导演、上映时间、上映国家、主要演员、语言、IMDB评分等。 理解数据: color 、director_name 、num_critic_for_reviews、duration、director_facebook_likes 、actor_3_facebook_likes、actor_2_name 、actor_1_facebook_likes 、gross 、genres 、actor_1_name 、movie_title 、num_voted_users、cast_total_facebook_likes 、actor_3_name 、facenumber_in_poster 、plot_keywords 、movie_imdb_link 、num_user_for_reviews、language 、country、content_rating、budget、title_year 、actor_2_facebook_likes 、imdb_score 、aspect_ratio 、movie_facebook_likes 4.项目功能详细介绍 显示电影评分分布的情况; 电影数量与平均分年度变化的情况; 评论家评论数与评分的关系; 评分与电影票房的关系; 电影数量大于5前提下平均分前十的导演推荐的数据; 不同电影类型的年份累计分析; 电影时长的分布及时长是否和评分有相关性; 电影时长的分布及时长是否和评分有相关性。 数据分析过程 1.主要功能实现的类和方法介绍 # 清洗runtime电影时长列数据,可使用str.split()方法 df['runtime'] = df['runtime'].str.split('').str.get(0).astype(int) df['runtime'].head() # 清洗year列,使用str[:]选取年份数字并转换成int类型,使用df.unique()方法检查数据 df['year'] = df['year'].str[-5:-1].astype(int) df['year'].unique() 2. 数据分析过程代码和解释说明 导入包: 导入、查看、清洗数据: 评分分布图: 电影数量与平均分布年度变化: 评论家评论数&评分、评分&票房: 电影数量大于5平均分前十的导演: 统计不同年份、不同类型电影的数量: cumsum = df.groupby(['main_genre', 'year']).title.count() # 使用累加功能统计1980年起不同年份不同电影类型的累计数量,对于中间出现的缺失值,使用前值填充 genre_cumsum = cumsum.unstack(level=0).cumsum().ffill() # 只选取总数量大于50的电影类型数据 genre_cumsum = genre_cumsum.loc[:,genre_cumsum.iloc[-1,:] >= 50] # 根据电影类型统计数据作图 fig, ax2 = plt.subplots(figsize=(12,6)) genre_cumsum.plot(ax=ax12, legend=False, linewidth=3) # 添加数据标签 for i in last_row.iteritems(): if i[0] == 'Adventure' or i[0] == 'Biography' or i[0] == 'Horror': ax2.annotate('{} {}'.format(int(i[1]), i[0]), xy=(2018.5, i[1]-5), fontsize=12) else: ax2.annotate('{} {}'.format(int(i[1]), i[0]), xy=(2018.5, i[1]+5), fontsize=12) # 美化图表 ax2.set_title('The Aggregate Movies of Different Genres Over Years', fontsize=16) ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.spines['left'].set_visible(False) ax2.tick_params(bottom=True, labelleft=False) ax2.set_xlabel('') plt.tight_layout() 电影时长的分布及时长是否和评分有相关性: fig, ax4 = plt.subplots() df['runtime_min'].hist(range=(70,210), bins=14, color=(114/255,158/255,206/255)) ax4.set_title('The Runtime Distribution of US Top Box Office Movies') ax4.spines['top'].set_visible(False) ax4.spines['left'].set_visible(False) ax4.spines['right'].set_visible(False) ax4.set_xticklabels(np.arange(70,220,10)) ax4.set_xticks(np.arange(70,220,10)) ax4.grid() 绘制时长和IMDB评分相关性: fig = plt.figure(figsize=(14,7)) sns.lmplot(data=df, x='runtime_min', y='imdb_rate') sns.despine() 三、数据分析结果评估 1、评分分布主要在5.0~8.0之间,3.0以下和9.0以上分布很少。如果8.0算为优秀,则优秀电影占比较少。 2、电影数量在1990~2000年间快速增长,2009年达到较高值。而电影的平均分整体上呈下降趋势。 3、评论家评论数与评分整体呈正相关关系,500以上评论家评论数对应的评分都高于6.0。 4、评分与票房整体呈正相关关系,但关系不强。 IMDB评分人数和电影票房的相关性很弱,高票房不代表评分人数多,低票房电影也能有大量的IMDB评分人数。 5、电影数量大于5平均分前十的导演:Christopher Nolan、Quentin Tarantino 、 Stanley Kubrick、 James Cameron 、Peter Jackson 、Alejandro G. Iñárritu 、David Fincher 、Martin Scorsese 、 Wes Anderson 、Paul Greengrass。 6. 前五大电影类型分别是动作片Action,喜剧片Comedy,动画片Animation,剧情片Drama,冒险片Adventure。1995年之前,动作片和喜剧片都是影院观众最喜爱的电影类型,对应的高票房数量不分伯仲,剧情片是另一相对流行的电影类型。1995年后,高票房的动作片快速增长,甩开了喜剧片。喜剧片随仍是高票房数量第多的电影类型,但近几年增速明显放缓。高票房动画片进入榜单的时间最晚,但在1998年前后迎来明显增长,此后的十年里完成了对剧情片和冒险片的超越。如果动画片保持目前的增速,有望在之后的十几十年里超越喜剧片,成为高票房数量第电影类型。 7. 时长和IMDB评分呈一定的相关性,时长短的电影既有高分也有低分,但时长超过160分钟的电影基本都能获得6分以上的分数,时长最长的两部电影甚至得到了接近9分的超高得分,IMDB评分接近或低于4分的电影时长均小于130分钟。丰富的剧情和长长的故事也许也是一种容易感染观众的方式,这也和之前提到的好的故事打动观众相呼应。 四、总结 数据分析的过程往往是一个从宏观到微观的过程。先从宏观上把握数据大体的情况,大胆地提出假设,然后再将数据进行细分,小心地求证。通过数据的对比,就很容易看出调整的效果。 有关活动效果的数据分析往往也会涉及数据的对比。具体的思路是从要分析的目的入手,首先思考造成这种情况的可能原因有什么,再从每个可能的原因中找到相应的数据,与要分析的目的的数据进行比较,看哪一个是造成该情况发生的主要原因。 这里要用到的是excel的图表工具,把每一种可能的数据都作出一个图表,与要分析的目的的数据图表进行比较,如果有某一个数据的变化曲线与之相差不多,则可以说这个所对应的原因是造成该情况发生的主要原因。 以上是分析活动的一些核心数据,核心数据的分析是最主要的,因为这直接反应了该活动最本质的效果。
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值