论文分享 | 现代数据中心场景下的分离式RAID

文章提出dRAID系统,旨在解决分布式存储中RAID的带宽瓶颈问题,通过点对点的数据访问和多阶段写入策略,提升了读写吞吐量,尤其在恢复读操作中实现显著性能提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天分享的这篇文章发表于ASPLOS 2023,标题是Disaggregated RAID Storage in Modern Datacenters,完成单位是北京大学。

https://doi.org/10.1145/3582016.3582027 (文末阅读原文可以跳转)


摘要

RAID(独立磁盘的冗余阵列)几十年来已被广泛采用,因为它提供了超出了单个磁盘可以提供的吞吐量和冗余。今天,由快速数据中心网络启用,以可接受的开销(即分解存储)访问远程块设备成为现实(例如,对于无服务器应用程序)。将 RAID 与远程存储相结合可以提供相同的好处,同时比其单片对应物产生更好的容错性和可容忍性。分离式RAID的关键挑战是处理RAID生成的额外网络传输,它可能消耗大量的NIC带宽。我们提出了 dRAID,这是一种分离式 RAID 系统,可实现接近最优的读写吞吐量。dRAID利用点对点的分解数据访问来减少正常状态和退化状态下的带宽消耗。它采用非阻塞多阶段写入来最大化节点间并行性,并应用流水线 I/O 处理来最大化设备间并行性。我们引入了带宽感知重建以获得更好的负载平衡。我们表明 dRAID 提供了高达 3 倍的加速带宽改进。轻量级对象存储的结果表明,dRAID 在各种工作负载上带来了 1.5 -2.35倍的吞吐量改进。

从摘要中我们可以得知这一篇文章主要提出了dRAID,目的是将RAID应用于当前数据中心的分布式场景。主要需要解决的挑战是由于计算RAID校验值而产生的额外读写网络传输,避免因为额外读写的网络传输导致大量NIC带宽消耗。

存在的问题

对于RAID5和RAID6,在写入新数据时(低于50%全条带写的情况),需要将老数据读出计算校验块的值,如果这个计算操作都在HOST端进行,那么存储结点向HOST端传输数据受限于HOST端NIC带宽硬件限制,这使得RAID直接应用于分布式存储的场景即使增加驱动器,也只能获取有限的优化,存在硬件瓶颈。

19132c4c7d20626402d216f1321fc1d2.png

如上图,a是RAID应用于单一机器场景,b是RAID直接应用于分布式存储场景。b图中存在HOST端NIC的带宽硬件瓶颈。

问题解决的机会

如上图c,可以利用数据中心各个存储结点之间的直接伙伴访问+将校验块的计算工作卸载到存储结点来避免HOST端过于拥塞,同时能够充分利用各个节点的带宽。

主要做的工作

文章主要提出了dRAID,一种针对数据中心分布式存储场景下的RAID架构,尽可能达到最佳的吞吐量和延迟。

在直接应用RAID的情况下,需要将老数据和老校验块读出,传输到HOST,再将新数据写入,再在HOST端将新老数据异或运算,得到校验块,再将校验块写入。但是写过RAID的都知道,对于RAID校验块计算,是一系列的异或操作,它是顺序无关的,无论以任何顺序去计算最终都是一致的结果。那么,对于每一个存储节点的部分条带写入场景,以上过程可以修改为,HOST直接下发写入,同时修改命令,让存储节点知道,这是一次部分条带写入,需要先将老数据读出和新数据做异或运算后再将新数据写入,完成后,将计算结果转发到负责存储校验块的存储节点(论文中叫reducer)。负责存储校验块的存储节点通过HOST下发的命令,能够清晰的知道会收到多少个完成了一部分异或运算的结果,最终,它将所有异或运算的部分结果和自身携带的老校验数据做异或,得到新的校验块,写入完成后,报告HOST。

ca37eb9f1b725da58ae2087dfc63296b.png

上图表示了一次部分写操作的处理流程。

d929dfd5e981664301f3f36279283a45.png

上图表示了一次恢复读的处理流程。

按照以上的逻辑,HOST端不再需要接收各个存储节点传输的老数据,只需要对以上流程进行逻辑控制即可,从而打破了NIC带宽的硬件瓶颈。如果某一结点损坏,需要读出校验块恢复,同样也可以采用类似的思想。

综上,为了实现以上的逻辑文章需要去实现以下的工作:

  1. 修改主机端的逻辑,主机端只需要进行逻辑控制,非必要不再负责计算校验数据;

  2. 修改存储服务器端的逻辑,存储服务器增加了一部分的运算逻辑;

  3. 修改协议,我们需要让存储结点知道该做什么事,对于一次写操作是否需要将老数据读取后做运算,对于一次读操作是否需要将老数据读出后传输,传输到哪一个存储结点等,需要命令中的额外字段来明确指出;

  4. 实现逻辑的具体算法以及错误处理策略。

文章还额外实现了基于流水线的优化和带宽感知的优化策略(在重建时根据当前带宽,灵活选择一个“更悠闲”的结点作为reducer)。

评估

文章做了大量的实验去评估dRAID的效果,由于打破了NIC硬件瓶颈,dRAID拥有更高的理论吞吐量和延迟,在实验中得到了充分的体现,相较于Linux-dm提供的RAID和Inter实现的RAID,在分布式存储情况下,性能有大幅地提升。

【资源说明】 1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通。 2.主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈! 本文介绍了基于QEM(Quadric Error Metrics,二次误差度量)的优化网格简化算法的C和C++实现源码及其相关文档。这一算法主要应用于计算机图形学领域,用于优化三维模型的多边形数量,使之在保持原有模型特征的前提下实现简化。简化的目的是为了提高渲染速度,减少计算资源消耗,以及便于网络传输等。 本项目的核心是网格简化算法的实现,而QEM作为该算法的核心,是一种衡量简化误差的数学方法。通过计算每个顶点的二次误差矩阵来评估简化操作的误差,并以此来指导网格简化过程。QEM算法因其高效性和准确性在计算机图形学中广泛应用,尤其在实时渲染和三维打印领域。 项目代码包含C和C++两种语言版本,这意味着它可以在多种开发环境中运行,增加了其适用范围。对于计算机相关专业的学生、教师和行业从业者来说,这个项目提供了丰富的学习和实践机会。无论是作为学习编程的入门材料,还是作为深入研究计算机图形学的项目,该项目都具有实用价值。 此外,项目包含的论文文档为理解网格简化算法提供了理论基础。论文详细介绍了QEM算法的原理、实施步骤以及与其他算法的对比分析。这不仅有助于加深对算法的理解,也为那些希望将算法应用于自己研究领域的人员提供了参考资料。 资源说明文档强调了项目的稳定性和可靠性,并鼓励用户在使用过程中提出问题或建议,以便不断地优化和完善项目。文档还提醒用户注意查看,以获取使用该项目的所有必要信息。 项目的文件名称列表中包含了加水印的论文文档、资源说明文件和实际的项目代码目录,后者位于名为Mesh-Simplification-master的目录下。用户可以将这些资源用于多种教学和研究目的,包括课程设计、毕业设计、项目立项演示等。 这个项目是一个宝贵的资源,它不仅提供了一个成熟的技术实现,而且为进一步的研究和学习提供了坚实的基础。它鼓励用户探索和扩展,以期在计算机图形学领域中取得更深入的研究成果。
内容概要:本文详细介绍了利用改进粒子群算法(PSO)进行混合储能系统(如电池与超级电容组合)容量优化的方法。文中首先指出了传统PSO易陷入局部最优的问题,并提出通过非线性衰减惯性权重、引入混沌因子和突变操作等方法来改进算法性能。随后,作者展示了具体的Python代码实现,包括粒子更新策略、适应度函数设计以及边界处理等方面的内容。适应度函数不仅考虑了设备的成本,还加入了对设备寿命和功率调节失败率的考量,确保优化结果的实际可行性。实验结果显示,在风光发电系统的应用场景中,改进后的PSO能够在较短时间内找到接近全局最优解的储能配置方案,相比传统方法降低了系统总成本并提高了循环寿命。 适合人群:从事电力系统、新能源技术研究的专业人士,尤其是对储能系统优化感兴趣的科研工作者和技术开发者。 使用场景及目标:适用于需要对混合储能系统进行容量优化的场合,旨在提高储能系统的经济效益和使用寿命,同时保证供电稳定性。通过学习本文提供的理论知识和代码实例,读者能够掌握改进粒子群算法的应用技巧,从而应用于实际工程项目中。 其他说明:文中提到的所有代码均为Python实现,且已在GitHub上提供完整的源代码链接(尽管文中给出的是虚拟地址)。此外,作者还计划将改进的PSO与其他优化算法相结合,进一步提升求解复杂问题的能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值