算法-动态规划:一个数组a[0...n-1],求a[j]-a[i]的最大值,其中i<j

其中数组a[n]是无序的,求a[j]-a[i]的最大值,且i<j,解此题有两种算法:

 

第一种方法:

 

从左往右求下标0到 k - 1 的最小值MIN
从右往左求 下标k到n -1 的最大值MAX

对于每个k都有一个MAX - MIN的值,最后求这个值的最大值即可。

例如数组:4 5 2 6 3 1

K:1 2 3 4 5

MIN: 4 4 2 2 2

MAX:6 6 6 3 1

MAX - MIN,最大的值为6 - 2 = 4, 即为结果

 

第二种方法:

令b[j] = a[j + 1] - a[j],

那么a[j] - a[i]=(a[i+1]-a[i])+(a[i+2]-a[i+1])+...+(a[j]-a[i-1])

                   = b[i] +b[i+1]+ ...+ b[j - 1],

即将问题转化成求一个数组子序列的最大值。这个过程的算法是有O(n)的算法的。

 

-----------------------------------------------

代码实现稍后补上,今天不想写了......

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值