新的状压dp姿势get√
看到这题想到了dp但是发现不会列dp方程。
遂看了看题解
然后 状压很棒。。
f[i][j]表示以i为结尾的 状态为j的方案数。何为 状态就是哪些牛选了哪些牛没有选。相当于我们有一个队列。每回有一个元素往里加。
所以
初始状态:f[i][1<<(i-1)]=1; //一开始就一头牛在队列里
转移:f[k][i|(1<<(k-1))]+=f[j][i] 当然j在状态i中,k不在并且k j编号符合要求
结果统计
∑i=1ni=f[i][tot]
tot即为总公式。
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#define int long long
using namespace std;
//by mars_ch
int f[20][1<<18];
int a[20];
int n,K;
signed main()
{
scanf("%lld%lld",&n,&K);
for(int i=1;i<=n;i++)
{
scanf("%lld",&a[i]);
}
for(int i=1;i<=n;i++)
{
f[i][1<<(i-1)]=1;
}
int tot=(1<<n)-1;
for(int i=0;i<=tot;i++)
{
for(int j=1;j<=n;j++)
{
if(i&(1<<(j-1)))
{
for(int k=1;k<=n;k++)
{
if((i|(1<<(k-1)))!=i && abs(a[j]-a[k])>K)
{
f[k][i|(1<<(k-1))]+=f[j][i];
}
}
}
}
}
int ans=0;
for(int i=1;i<=n;i++)
{
ans+=f[i][tot];
}
printf("%lld\n",ans);
}