- 博客(705)
- 资源 (12)
- 收藏
- 关注
原创 深入详解:决策树在医学影像领域传染病与肺部疾病诊断(除肺炎外)的应用与实现
本文探讨了决策树在医学影像领域,尤其是传染病与肺部疾病(如肺结核、COVID-19等)诊断中的应用。决策树因其可解释性强、计算高效等特点,成为医生辅助诊断的理想工具。文章首先介绍了决策树的基本原理和构建过程,包括信息增益、基尼指数等关键指标。随后重点分析了决策树在肺结核检测、COVID-19诊断等具体场景中的优势和应用案例,并提供了详细的实现流程,涵盖数据预处理、特征提取(HOG和纹理特征)到模型训练评估的完整步骤。通过流程图和代码示例,帮助初学者理解如何将决策树算法应用于实际医学影像分析任务。
2025-07-15 03:30:00
358
3
原创 深入详解:决策树在医学影像分割特征选择中的应用与实现
决策树在医学影像分割特征选择中的应用 决策树作为机器学习经典算法,因其直观性和可解释性,在医学影像分割任务中具有重要价值。医学影像通常包含大量高维数据(如MRI、CT),决策树通过评估每个特征对分割任务的贡献,自动筛选关键特征(如纹理、灰度、边缘),实现数据降维和分割精度提升。其数学基础基于信息增益或基尼指数,计算特征重要性。典型应用包括脑肿瘤、肝脏和肺结节分割。虽然决策树存在过拟合等局限,但其可解释性强的特点使其成为医学影像分析中特征选择的有力工具。
2025-07-15 01:00:00
725
原创 深入详解:决策树在医学影像领域眼科影像诊断的应用与实现
本文深入探讨了决策树算法在眼科影像诊断中的应用。决策树作为一种直观且可解释性强的机器学习方法,特别适合用于糖尿病视网膜病变(DR)分类和青光眼检测等任务。文章首先介绍了决策树的基本概念、构建原理(包括信息增益和基尼指数等特征选择准则)及其优缺点。随后详细阐述了决策树在眼科影像中的具体应用场景,如基于眼底摄影图像的DR分级和OCT图像的青光眼检测。为提升性能,文章还提供了特征提取、数据预处理、集成方法和剪枝策略等优化技巧。
2025-07-14 05:00:00
617
7
原创 决策树在医学影像骨科分析中的深入数据处理与优化建议
摘要: 本文详细探讨了决策树在骨科影像分析(如骨关节炎分级、骨折检测)中的数据处理与优化方法。针对X光片、CT/MRI图像,重点介绍了图像预处理(灰度归一化、对比度增强)、特征提取(HOG、LBP等传统特征及深度学习特征)技术,并提供了完整代码示例。针对类别不平衡问题,建议使用SMOTE过采样和类权重调整。最后强调通过交叉验证和独立测试集评估模型性能。全文兼顾初学者理解与高级用户需求,为骨科影像分析提供实用技术指导。
2025-07-14 02:00:00
827
3
原创 深入详解:决策树在医学影像骨科分析中的应用与实现
决策树在医学影像骨科分析中的应用与优化 决策树作为一种可解释性强的机器学习方法,在骨科影像分析中展现出独特价值。其通过树形结构实现骨折检测、骨关节炎分级和骨龄评估等任务,核心优势在于直观的决策规则和高效的特征处理能力。关键技术包括基于信息增益或基尼指数的特征划分、预剪枝/后剪枝优化,以及结合传统特征与深度学习的方法。实际应用中需注意数据预处理、模型集成和超参数调优,以提升模型性能。
2025-07-13 02:00:00
736
4
原创 深入详解:决策树在医学影像领域心脏疾病诊断的应用及实现细节
决策树(Decision Tree)作为一种经典的机器学习算法,因其简单、直观和可解释性强的特点,在医学影像领域的心脏疾病诊断中具有广泛应用。本文将深入讲解决策树的概念、原理、在心脏疾病诊断中的具体应用、实现细节及优化技巧,使初学者也能理解并实践。
2025-07-12 18:44:29
908
6
原创 深入详解:决策树在医学影像脑部疾病诊断中的应用与实现
摘要 本文探讨了决策树在医学影像脑部疾病诊断中的应用与实现。决策树因其简单性、可解释性和高效性,成为脑肿瘤分类、阿尔茨海默病检测和中风诊断等任务的有效工具。文章首先介绍了决策树的基本原理、核心概念及其在医学影像中的优势,随后详细阐述了其在脑部疾病诊断中的具体应用场景。通过脑肿瘤分类的实例,展示了从数据预处理、特征提取到模型训练和可视化的完整流程,并提供了代码示例。决策树的直观树形结构有助于医生理解诊断逻辑,使其成为医疗AI领域的重要工具。
2025-07-12 18:30:03
613
2
原创 决策树算法在医学影像诊断中的广泛应用
决策树在医学影像诊断中因其可解释性、高效性和灵活性,广泛应用于肺炎、癌症、脑部疾病、心脏疾病、骨科、眼科、传染病、儿科等领域的分类、分割和特征选择任务。通过特征提取、集成方法(如随机森林、XGBoost)和深度学习结合,决策树性能显著提升。多模态融合:整合影像与基因组学数据。自动化特征工程:结合AutoML优化特征提取。嵌入式部署:将决策树部署到低资源医疗设备。
2025-07-11 12:59:25
544
57
原创 深入详解:决策树在医学影像领域癌症检测与分类的应用及实现细节
摘要: 决策树作为一种可解释性强、高效的机器学习算法,在医学影像癌症检测(如乳腺癌、肺癌、皮肤癌)中具有重要应用。其核心通过特征选择(信息增益、基尼指数)递归构建树结构,结合医学影像特征(纹理、形状等)实现分类。典型流程包括图像预处理、特征提取、决策树训练与评估。以乳腺癌为例,Python实现展示了从DICOM影像提取特征到模型训练的完整过程,凸显决策树在医疗诊断中的透明性与实用性,但需注意过拟合和噪声敏感性等局限。
2025-07-11 01:00:00
1734
32
原创 深入详解:决策树在医学影像领域肺炎诊断的应用与实现
摘要 本文深入探讨了决策树算法在医学影像领域肺炎诊断中的应用。首先介绍了决策树的基本概念、原理(包括信息增益和基尼指数)及其优缺点。随后详细阐述了决策树在基于胸部X光片的肺炎诊断中的具体应用流程,包括图像预处理、特征提取(灰度、纹理和形状特征)和模型构建。最后提供了完整的Python实现代码,涵盖数据准备、特征提取、决策树训练和结果可视化。该方法具有可解释性强、计算高效的优点,为肺炎辅助诊断提供了实用解决方案,同时也指出了决策树的局限性及改进方向。
2025-07-10 06:00:00
963
12
原创 深入详解:决策树在医疗诊断中的应用——以医学影像领域为例
决策树是一种直观且可解释性强的机器学习算法,在医疗影像诊断中具有重要应用价值。本文详细介绍了决策树的基础原理、在肺炎诊断等医疗影像任务中的应用场景,以及优化技巧。通过特征提取、剪枝策略和集成方法可以提升模型性能。文章还提供了基于Python的决策树实现示例,包括数据预处理、模型训练和可视化,帮助初学者快速掌握决策树在医疗领域的应用。决策树的透明性使其非常适合辅助医生诊断,但需注意避免过拟合和处理类别不平衡问题。
2025-07-10 01:00:00
1091
2
原创 支持向量机(SVM)在PET图像分类(阿尔茨海默病检测,ADNI数据集)中的应用与实现
ADNI(Alzheimer’s Disease Neuroimaging Initiative)数据集是研究阿尔茨海默病的公开多模态数据库,包含PET、MRI、临床评估等数据。PET图像通常以氟代脱氧葡萄糖(FDG)为显像剂,反映脑部葡萄糖代谢水平。ADNI数据已标注为NC、MCI和AD三类,需注意MCI可能进一步分为稳定型(sMCI)和进展型(pMCI)。
2025-07-09 06:00:00
1048
14
原创 支持向量机(SVM)在病理切片图像分类(癌细胞检测,Camelyon16/17、TCGA)中的应用与实现
病理切片图像分类是医学影像分析的重要领域,特别是在癌细胞检测中,SVM因其对高维数据和小样本场景的优异性能,成为一种经典且有效的分类方法。本文将深入探讨SVM在Camelyon16/17和TCGA数据集上的应用,全面覆盖概念与原理、应用场景、及挑战与应对策略,欢迎感兴趣的阅读。
2025-07-09 01:00:00
785
8
原创 支持向量机(SVM)在心脏超声图像分类中的应用与实现
摘要 本文探讨了支持向量机(SVM)在心脏超声图像分类中的应用。针对CAMUS和EchoNet-Dynamic数据集,文章详细介绍了完整实现流程,包括数据预处理(去噪、标准化、增强)、特征提取(传统LBP/GLCM特征和深度CNN特征)以及SVM模型训练(含参数优化)。内容涵盖心脏超声图像特有的动态性、噪声高、样本不平衡等挑战,并提供了具体的Python代码示例。该方法可有效应用于心脏功能异常的二分类和多分类任务,为医学影像分析提供了一种高效可靠的解决方案.
2025-07-08 06:00:00
1562
18
原创 支持向量机(SVM)在超声图像分类(胎儿异常检测,Fetal Ultrasound Dataset)中的应用与实
SVM在胎儿超声图像分类中的应用 摘要:本文探讨了支持向量机(SVM)在胎儿超声图像分类中的应用。超声成像因其安全性和实时性广泛应用于胎儿异常检测。SVM凭借小样本处理能力和强泛化性能,成为该任务的理想选择。文章系统介绍了SVM核心原理(包括最优超平面、核技巧和软间隔),并针对胎儿超声数据集(Fetal Ultrasound Dataset)提出了完整实现方案:首先进行图像去噪、标准化和增强等预处理;然后提取LBP纹理特征和几何特征;最后构建基于RBF核的SVM分类器。
2025-07-08 01:30:00
1144
14
原创 支持向量机(SVM)在心脏MRI分类(心肌病检测)中的应用与实现
摘要: 本文探讨支持向量机(SVM)在心脏MRI分类(心肌病检测)中的应用,基于ACDC和UK Biobank数据集。SVM通过最优超平面最大化几何间隔,结合核技巧(如RBF核)处理非线性数据,并引入软间隔应对噪声。实现流程包括数据预处理(标准化、分割)、特征提取(几何、纹理、深度特征)及模型训练(参数优化)。心脏MRI数据的高维性、样本稀缺性和噪声问题要求针对性策略,如数据增强和特征融合。SVM在小样本高维场景中表现优异,为心肌病分类提供可靠解决方案。代码示例涵盖特征提取与模型训练,具有实践参考价值。
2025-07-07 11:31:21
1017
10
原创 更换SSL证书引发的异常:`sun.security.validator.ValidatorException: PKIX path building failed` `[Nginx跳转失败:501]
更换SSL证书后出现PKIX path building failed异常和Nginx 501错误,可能是由于新证书链不完整或Java TrustStore未更新。关键排查步骤包括: 检查Nginx证书配置,确保fullchain.pem包含完整证书链(服务器证书+中间证书) 验证Java TrustStore是否包含新证书的根CA(通过keytool检查cacerts文件) 确认TLS协议兼容性(旧版Java可能不支持TLS 1.2/1.3)
2025-07-07 11:17:25
983
10
原创 支持向量机(SVM)在肝脏CT/MRI图像分类(肝癌检测)中的应用及实现
肝癌(包括原发性肝细胞癌和转移性肝癌)是全球主要的癌症死亡原因之一。二分类:区分正常肝脏与肝癌病变。多分类:识别肝癌分期(早期、晚期)或病变类型(原发性、转移性)。检测与分割结合:基于分割结果提取特征,输入SVM进行分类。包含131例CT扫描,标注了肝脏和肿瘤区域。图像分辨率:512x512像素,切片厚度1-3mm。特点:包含多样化的肝癌病灶(大小、形状、位置差异大)。3DIRCADb包含20例CT和MRI图像,标注了肝脏、肿瘤及其他结构。特点:数据集规模小,适合小样本场景研究。
2025-07-06 21:31:18
1003
6
原创 深度特征提取在LIDC-IDRI数据集多分类任务中的优化细节
深度特征提取通过3D-CNN显著提升了LIDC-IDRI多分类任务的性能,尤其对可疑结节的区分能力。强大表示能力:捕捉复杂体视模式。灵活性:结合SVM,适应小样本场景。可扩展性:支持迁移学习和混合特征。最佳实践建议模型选择:轻量级3D-CNN(如文中设计),或预训练3D-ResNet。数据增强:3D旋转、缩放、亮度调整,增加样本多样性。注意力机制:SE-Net或CBAM,聚焦关键区域。混合特征:结合GLCM和深度特征,提升鲁棒性。特征分析:SHAP和Grad-CAM,确保模型可解释性。
2025-07-06 21:23:20
1045
4
原创 支持向量机(SVM)在LIDC-IDRI数据集上的多分类实现(肺癌检测)
摘要:本文探讨了支持向量机(SVM)在LIDC-IDRI数据集上的多分类实现,用于区分良性、可疑和恶性肺部结节。LIDC-IDRI数据集提供1-5恶性评分,通过医生标注平均分为三类。SVM采用One-vs-One策略处理多分类任务,克服数据不平衡(恶性样本仅10-15%)和标注噪声等挑战。实现流程包括DICOM图像预处理、灰度共生矩阵特征提取,以及SMOTE过采样和类别权重调整处理不平衡数据。研究表明,SVM结合适当的特征工程和多分类策略,在肺部结节分类中表现出良好性能,为肺癌早期诊断提供有效工具。
2025-07-04 06:00:00
1101
47
原创 支持向量机(SVM)在医学影像数据集中的典型应用
摘要 支持向量机(SVM)在医学影像分析中具有广泛应用,适用于CT、MRI、超声等多种模态。典型应用包括: 肺癌检测(LIDC-IDRI数据集),通过纹理特征和RBF核分类肺结节; 肝癌识别(LiTS数据集),结合形状与纹理特征,使用SMOTE处理数据不平衡; 心肌病分类(ACDC数据集),利用心脏运动特征和3D-CNN提取特征; 胎儿异常检测(超声图像),提取LBP特征并调整类权重; 癌细胞分类(Camelyon16数据集),采用预训练模型提取病理切片特征。SVM在小样本、高维数据中表现优异。
2025-07-04 01:00:00
1612
26
原创 支持向量机(SVM)在肺部CT图像分类(肺癌检测)中的实现与优化
本文探讨了支持向量机(SVM)在肺部CT图像分类(肺癌检测)中的应用。文章首先介绍了SVM的核心概念与数学原理,包括最优超平面、核技巧和软间隔。接着详细分析了LIDC-IDRI数据集的特点与挑战,该数据集包含1018例CT扫描,存在高维特征、样本稀缺、不平衡数据等问题。随后给出了完整的实现流程:从DICOM图像预处理、结节特征提取(纹理和形状特征),到SVM模型训练与优化。代码示例展示了如何使用Python进行数据预处理、GLCM特征提取以及网格搜索优化SVM参数。该方法在肺癌早期筛查中具有重要应用价值。
2025-07-03 06:00:00
1751
15
原创 支持向量机(SVM)在ADNI数据集阿尔茨海默病分类中的深入应用与实现
摘要: 本文探讨了支持向量机(SVM)在ADNI数据集阿尔茨海默病(AD)分类中的应用。ADNI数据集包含多模态脑成像数据(MRI、PET)及临床标签(NC、MCI、AD),SVM因其小样本适应性和高维数据处理能力成为理想选择。文章详细介绍了ADNI数据特点、SVM数学原理(包括核技巧与软间隔优化),并提供了完整的实现流程:从MRI/PET数据预处理、ROI特征提取(如海马体积、皮质厚度)到多分类SVM建模(含代码示例)。重点解决了样本不平衡、多模态融合等挑战,通过可视化与参数优化提升模型性能.
2025-07-03 02:00:00
678
2
原创 支持向量机(SVM)在脑部MRI分类中的深入应用与实现
摘要: 支持向量机(SVM)因其在小样本、高维数据上的优异性能,成为脑部MRI分类的重要方法。本文系统介绍了SVM在脑部MRI分类中的应用流程,包括数据预处理、特征提取(纹理、深度特征等)、模型优化(核函数选择、参数调优)及性能评估。通过BraTS数据集案例,展示SVM实现脑肿瘤分类的完整代码,并探讨多模态融合、不平衡数据处理等实际挑战。实验表明,SVM结合合适的特征工程,可达到较高分类准确率,为脑部疾病辅助诊断提供可靠工具。未来方向包括与深度学习结合及跨中心数据泛化。
2025-07-02 07:00:00
2025
17
原创 深入探讨支持向量机(SVM)在乳腺癌X光片分类中的应用及实现
支持向量机(SVM)在乳腺癌X光片分类中的应用是医学影像领域的一个经典案例,因其在小样本、高维数据上的优异性能以及强大的泛化能力,特别适合处理乳腺癌X光片(如Mammography)中的肿块分类任务。本文将深入详尽地探讨SVM在乳腺癌X光片分类中的相关理论及实现细节,欢迎感兴趣的学习。
2025-07-02 02:00:00
1300
46
原创 详解DICOM中Tag (0018,1164) Imager Pixel Spacing 的含义与作用
摘要:DICOM Tag (0018,1164)(Imager Pixel Spacing)定义了医学影像在探测器平面上的原始像素物理间距(单位:mm),与(0028,0030)不同,它反映未校正的设备硬件分辨率。该Tag主要用于CR/DX等模态,结合(0020,0032)和(0020,0037)可间接映射到患者坐标系,并用于计算几何放大因子(放大因子=SID/(SID-源到患者距离))。其核心作用包括描述探测器特性、辅助几何校正、质量控制及临床测量。
2025-07-01 06:00:00
60
4
原创 详解DICOM中Tag (0020,0032) Image Position (Patient) 的含义与作用
DICOM Tag (0020,0032) Image Position (Patient) 摘要 DICOM标准中的Tag (0020,0032)定义了医学影像在患者三维坐标系中的空间位置,包含影像左上角像素中心的坐标值[x,y,z],单位为毫米。作为Type 1必填字段,它与Image Orientation (Patient)共同描述影像的几何属性。该坐标基于患者坐标系(X:右→左,Y:前→后,Z:头→脚方向),用于实现影像空间定位、多帧对齐、三维重建等临床应用。
2025-07-01 02:00:00
141
2
原创 详解DICOM中Tag (0020,0037) Image Orientation (Patient) 的含义与作用
DICOM Tag (0020,0037) Image Orientation (Patient)定义了医学影像平面在患者三维坐标系中的方向,包含6个浮点数表示行方向和列方向的方向余弦。该Tag通过两个单位向量(行向量和列向量)描述影像平面取向,且两者必须正交。关键作用包括空间定位、多平面重建、图像配准和三维可视化等临床应用。文章详细解析了其几何意义,提供了标准断面示例(横断面、矢状面、冠状面)和验证方法,并给出Python代码示例说明如何解析和可视化方向向量。
2025-06-30 06:00:00
145
10
原创 详解三角函数在医学影像MPR重建中的核心应用及其重要性
摘要: 三角函数(正弦、余弦、正切、余切)在医学影像多平面重建(MPR)中发挥核心作用,支撑坐标旋转、投影计算和插值过程。通过旋转矩阵(含正弦/余弦)实现三维体数据的坐标变换,利用角度参数化投影平面法向量,并结合正切/余切优化插值权重,确保重建切片的几何精度。代码示例验证了三角函数在旋转和投影中的实际应用,凸显数学工具对医学影像算法的重要性。MPR技术依赖三角函数的几何特性,为医生提供任意视角的高质量二维切片,辅助精准诊断。
2025-06-30 02:00:00
52
8
原创 支持向量机(SVM)在医疗诊断:医学影像领域的应用与实现
支持向量机(Support Vector Machine, SVM)作为一种经典的机器学习算法,因其强大的分类能力和数学上的严谨性,在医疗诊断的医学影像领域得到了广泛应用。本文将从**SVM的概念与原理**、**医学影像分类中的应用场景**、**实现细节**、**代码示例**到**优化与实践建议**,全面解析SVM在医学影像领域的技术细节,欢迎阅读。
2025-06-29 09:00:00
733
14
原创 支持向量机(SVM)深度解析:从数学根基到工程实践
支持向量机(SVM)是一种强大的监督学习算法,主要用于分类任务。其核心思想是通过寻找最优超平面最大化几何间隔,包含硬间隔(线性可分)、软间隔(允许分类错误)和核技巧(非线性问题)三种方法。数学上,SVM转化为二次规划问题,通过拉格朗日乘子法求解。实践方面,Python的scikit-learn库提供了便捷实现,包括线性SVM分类和RBF核处理非线性数据。关键参数如惩罚系数C和核函数选择需通过网格搜索优化。SVM在文本分类、图像识别等领域表现优异,但计算复杂度随数据量增长而提高。
2025-06-29 03:00:00
816
27
原创 深入详解:随机森林算法——概念、原理、实现与应用场景
随机森林(Random Forest, RF)是一种经典的集成学习算法,广泛应用于机器学习任务。本文将通过**图文结合**的方式,全面解析随机森林的核心原理、实现细节和应用实践,帮助读者建立系统认知。
2025-06-28 11:48:20
1304
18
原创 深入详解:决策树算法的概念、原理、实现与应用场景
决策树是一种直观而强大的机器学习算法,适用于分类和回归任务。它通过树形结构(根节点、内部节点、叶节点)进行决策,支持特征选择和可视化,易于理解但需注意过拟合问题。算法通过信息增益或基尼指数选择最优特征划分数据,并可通过剪枝优化。Python的scikit-learn库提供了便捷的实现,广泛应用于金融评分、医疗诊断和商业分析等领域。决策树特别适合需要高解释性的场景,是机器学习入门的重要工具。
2025-06-28 11:07:26
1159
33
原创 使用 Scikit-learn 训练支持向量机 (SVM) 分类器:从理论到实践
使用Scikit-learn训练SVM分类器指南 本文介绍了使用Scikit-learn训练支持向量机(SVM)分类器的完整流程。首先阐述了SVM的核心原理,包括超平面、支持向量、最大间隔优化、核函数和正则化等概念。通过鸢尾花数据集(仅使用Setosa和Versicolor两类)的实践演示,详细展示了数据预处理、模型训练、评估和可视化的关键步骤。 实现步骤包括:1)数据加载与特征选择;2)标准化处理和训练测试集划分;3)训练线性核和RBF核SVM模型;4)准确率评估和支持向量分析;5)决策边界可视化。
2025-06-25 06:00:00
1039
5
原创 线性回归模型实践-使用 NumPy 实现简单线性回归模型
本文介绍了使用NumPy库实现简单线性回归模型的完整流程。首先讲解了线性回归的基本原理,通过生成模拟数据展示如何用正规方程求解参数(截距和斜率),并计算均方误差评估模型效果。代码包含数据生成、预处理、模型训练、预测和可视化步骤,附带详细注释。文章还探讨了梯度下降优化、多项式特征扩展等进阶方法,并指出大数据集下的计算注意事项。该实现适合机器学习初学者理解线性回归核心概念,为进一步学习更复杂模型奠定基础。
2025-06-25 02:00:00
804
2
原创 机器学习评价指标:准确率与F1分数的深入解析
机器学习评价指标:准确率与F1分数解析 在机器学习分类任务中,准确率(Accuracy)和F1分数是核心评价指标。准确率衡量模型总体预测正确率((TP+TN)/总样本数),简单直观但易受类别不平衡影响;F1分数则是精确率(Precision)与召回率(Recall)的调和平均(2×Precision×Recall/(Precision+Recall)),更适合不平衡数据或重视正例的场景(如医疗诊断)。 对比与选择: 准确率适用于类别平衡、错误成本相似的场景(如手写数字识别)。
2025-06-24 07:00:00
716
5
原创 AI大模型机器学习之无监督学习:聚类的数学与应用
无监督学习中的聚类技术 摘要:本文系统介绍了无监督学习的核心概念,重点讲解了聚类技术的数学原理与典型算法。主要内容包括: 聚类的基本概念:通过相似性度量将无标签数据分组 关键算法解析:K均值(目标函数优化)、层次聚类(树状结构)、DBSCAN(密度聚类)、GMM(概率模型) 数学基础:涵盖欧几里得距离、高斯分布等核心公式 实际应用:市场细分、图像处理、异常检测等场景 评估方法:轮廓系数、肘部法则等指标 ,展示了scikit-learn实现K均值与DBSCAN的完整流程,适合AI开发者从理论到实践的全面学习。
2025-06-24 03:00:00
1066
1
原创 AI大模型之机器学习理论及实践:监督学习-机器学习的核心基石
机器学习(Machine Learning, ML)是人工智能(AI)的重要分支,而监督学习(Supervised Learning)是机器学习中最常见且基础的范式之一。监督学习通过利用带标签的数据(输入与输出的对应关系)训练模型,使其能够对新数据进行预测。监督学习主要分为两大任务:回归和分类。本文将深入讲解监督学习的基本概念、回归与分类的原理、算法及其在实际场景中的应用,适合初学者和进阶开发者参考。
2025-06-23 12:41:56
809
8
原创 机器学习基础:从概念到应用的全面解析
机器学习(ML)是人工智能(AI)的核心支柱,广泛应用于图像识别、自然语言处理、推荐系统等领域。作为AI大模型的基础,机器学习通过数据驱动的方式,让计算机从数据中学习规律并进行预测或决策。本文将深入讲解机器学习的基础知识点,包括核心概念、原理及其在实际场景中的应用,,适合希望深入理解ML的开发者参考。
2025-06-23 11:38:51
1199
3
原创 深入详解DICOM医学影像在二维图像应用中的3D空间坐标定位功能及其实现
DICOM(Digital Imaging and Communications in Medicine)是医学影像领域的标准格式,广泛用于存储和传输MRI、CT等医学影像数据。其3D空间坐标定位功能是将二维图像的像素坐标映射到三维患者坐标系(LPS:Left-Posterior-Superior),以支持空间分析、多平面重建(MPR)、体视显微镜导航等功能。本文将深入探讨DICOM医学影像在二维图像应用中的3D空间坐标定位功能,详细讲解其作用、原理、涉及的数学与几何概念、核心算法及C++实现,欢迎学习。
2025-06-22 09:00:00
53
4
DICOM文件+DX放射平片-数字X射线图像DICOM测试文件
2024-11-13
DICOM序列MR核磁图像文件-测试图像
2024-11-13
DICOM完整序列图像文件+CT胸部(CHEST)薄层序列图像文件
2024-11-12
DICOM图像文件文件+乳腺钼靶图像+MG乳腺图像
2024-11-12
Postman-win64测试工具、Postman-win64 测试工具安装包、webApi测试工具
2024-10-21
qt-windows-5.14.2安装包,qt-opensource-windows-x86-5.14.2安装包百度网盘地址
2024-10-09
基于c# .Net Winform窗体的SQLite数据库应用实现简单的学生管理系统源码
2024-08-24
VS2017中出现致命错误 RC1015: 无法打开包含文件 'afxres.h' 问题
2018-10-09
qedit.h头文件下载-directshow中qedit库文件
2020-04-16
oracle官方64位客户端-instantclient-basic-windows.x64-11.2.0.4.0.zip
2019-07-24
TA创建的收藏夹 TA关注的收藏夹
TA关注的人