目录
前言:
接口自动化是软件测试领域中的一个重要环节,它可以自动化执行接口测试用例,快速发现和定位接口问题,提高软件的质量和稳定性。为了实现接口自动化的高效执行和管理,我们需要开发一个接口自动化框架。
本文将分享一个基于Python语言实现的接口自动化框架封装项目实战,重点介绍了如何对接口进行关联封装和极限改进,从而提高接口自动化框架的可靠性和扩展性。
一、接口封装与封装层级
接口封装是指将一个或多个接口进行封装,封装成一个更高层次的接口,使得接口调用更加方便和简洁。接口封装一般分为三个层级:
1、基础封装层:将底层的接口进行封装,提供基本的请求和响应信息。
2、逻辑封装层:在基础封装的基础上,将接口的输入参数和输出结果进行组合,形成更为高层次的功能。
3、业务封装层:在逻辑封装层的基础上,将多个接口进行关联调用,形成更为完整的业务场景。
举个例子,我们现在要开发一个接口自动化框架来测试某个电商平台的商品查询接口,那么我们就需要对该接口进行封装。假设该接口需要输入一个商品名称,返回该商品的详细信息,那么我们可以使用下面的代码进行基础封装:
import requests
class GoodsApi:
def __init__(self):
self.base_url = "https://xxx.com/api/goods"
def query_good(self, name):
url = f"{self.base_url}/{name}"
response = requests.get(url)
return response.json()
在基础封装层的基础上,我们可以继续封装逻辑层和业务层。如果需要查询某个分类下的商品信息,那么逻辑封装层的代码可以是这样的:
class CategoryApi:
def __init__(self):
self.base_url = "https://xxx.com/api/category"
self.goods_api = GoodsApi()
def query_category_goods(self, category_name):
category_info = self.query_category(category_name)
goods_info = []
for goods_name in category_info.get('goods'):
good_info = self.goods_api.query_good(goods_name)
goods_info.append(good_info)
return goods_info
def query_category(self, category_name):
url = f"{self.base_url}/{category_name}"
response = requests.get(url)
return response.json()
在业务封装层中,我们可以将多个接口进行组合,形成更为完整的业务场景。例如,我们想要查询某个用户的所有订单信息,那么可以这样封装:
class UserApi:
def __init__(self):
self.base_url = "https://xxx.com/api/user"
self.category_api = CategoryApi()
def query_user_order(self, user_id):
user_info = self.query_user(user_id)
order_info = []
for category_name in user_info.get('or