Best Time to Buy and Sell Stock with Cooldown

Hi,

I just come across this problem, and it's very frustating since I'm bad at DP.

So I just draw all the actions that can be done.

Here is the drawing (Feel like an elementary ...)

enter image description here

There are three states, according to the action that you can take.

Hence, from there, you can now the profit at a state at time i as:

s0[i] = max(s0[i - 1], s2[i - 1]); // Stay at s0, or rest from s2
s1[i] = max(s1[i - 1], s0[i - 1] - prices[i]); // Stay at s1, or buy from s0
s2[i] = s1[i - 1] + prices[i]; // Only one way from s1

Then, you just find the maximum of s0[n] and s2[n], since they will be the maximum profit we need (No one can buy stock and left with more profit that sell right :) )

Define base case:

s0[0] = 0; // At the start, you don't have any stock if you just rest
s1[0] = -prices[0]; // After buy, you should have -prices[0] profit. Be positive!

s2[0] = INT_MIN; // Lower base case

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.size() <= 1)
            return 0;
        vector<int> s0(prices.size(), 0);
        vector<int> s1(prices.size(), 0);
        vector<int> s2(prices.size(), 0);
        s0[0] = 0;
        s1[0] = -prices[0];
        s2[0] = 0;
        for (int i=1; i<prices.size(); ++i) {
            s0[i] = max(s0[i-1], s2[i-1]);
            s1[i] = max(s1[i-1], s0[i-1] - prices[i]);
            s2[i] = s1[i-1] + prices[i];
        }
        return max(s0[prices.size() - 1], s2[prices.size() - 1]);
    }
};
class Solution(object):
    def maxProfit(self, prices):
        """
        :type prices: List[int]
        :rtype: int
        """
        if len(prices) <= 1:
            return 0
        s0, s1, s2 = [0]*len(prices), [0]*len(prices), [0]*len(prices)
        s1[0] = -prices[0]
        for i in range(1, len(prices)):
            s0[i] = max(s0[i - 1], s2[i - 1])
            s1[i] = max(s1[i - 1], s0[i - 1] - prices[i])
            s2[i] = s1[i - 1] + prices[i]
        return max(s0[-1], s2[-1])


      
      
     
     

The series of problems are typical dp. The key for dp is to find the variables to represent the states and deduce the transition function.

Of course one may come up with a O(1) space solution directly, but I think it is better to be generous when you think and be greedy when you implement.

The natural states for this problem is the 3 possible transactions : buysellrest. Here rest means no transaction on that day (aka cooldown).

Then the transaction sequences can end with any of these three states.

For each of them we make an array, buy[n]sell[n] and rest[n].

buy[i] means before day i what is the maxProfit for any sequence end with buy.

sell[i] means before day i what is the maxProfit for any sequence end with sell.

rest[i] means before day i what is the maxProfit for any sequence end with rest.

Then we want to deduce the transition functions for buy sell and rest. By definition we have:

buy[i]  = max(rest[i-1]-price, buy[i-1]) 
sell[i] = max(buy[i-1]+price, sell[i-1])
rest[i] = max(sell[i-1], buy[i-1], rest[i-1])

Where price is the price of day i. All of these are very straightforward. They simply represents :

(1) We have to `rest` before we `buy` and 
(2) we have to `buy` before we `sell`

One tricky point is how do you make sure you sell before you buy, since from the equations it seems that [buy, rest, buy] is entirely possible.

Well, the answer lies within the fact that buy[i] <= rest[i] which means rest[i] = max(sell[i-1], rest[i-1]). That made sure [buy, rest, buy] is never occurred.

A further observation is that and rest[i] <= sell[i] is also true therefore

rest[i] = sell[i-1]

Substitute this in to buy[i] we now have 2 functions instead of 3:

buy[i] = max(sell[i-2]-price, buy[i-1])
sell[i] = max(buy[i-1]+price, sell[i-1])

This is better than 3, but

we can do even better

Since states of day i relies only on i-1 and i-2 we can reduce the O(n) space to O(1). And here we are at our final solution:

Java

public int maxProfit(int[] prices) {
    int sell = 0, prev_sell = 0, buy = Integer.MIN_VALUE, prev_buy;
    for (int price : prices) {
        prev_buy = buy;
        buy = Math.max(prev_sell - price, prev_buy);
        prev_sell = sell;
        sell = Math.max(prev_buy + price, prev_sell);
    }
    return sell;
}

C++

int maxProfit(vector<int> &prices) {
    int buy(INT_MIN), sell(0), prev_sell(0), prev_buy;
    for (int price : prices) {
        prev_buy = buy;
        buy = max(prev_sell - price, buy);
        prev_sell = sell;
        sell = max(prev_buy + price, sell);
    }
    return sell;
}

For this problem it is ok to use INT_MIN as initial value, but in general we would like to avoid this. We can do the same as the following python:

Python

def maxProfit(self, prices):
    if len(prices) < 2:
        return 0
    sell, buy, prev_sell, prev_buy = 0, -prices[0], 0, 0
    for price in prices:
        prev_buy = buy
        buy = max(prev_sell - price, prev_buy)
        prev_sell = sell
        sell = max(prev_buy + price, prev_sell)
    return sell

 

 

 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值