
机器学习
文章平均质量分 93
学习总结机器学习、人工智能、深度学习相关知识
PleaseBrave
我怕我配不上我受的苦难
展开
-
【神经网络 基础知识整理】前向传播 && 反向传播
再对数据进行相应的处理,继续传下去,直到输出层;反向传播是从后往前传播的,从output层到input层的方向:目标函数(对应的损失函数)对某权重or某偏置(即神经网络中可训练的参数)。原创 2024-03-18 16:10:15 · 3507 阅读 · 0 评论 -
【神经网络 基本知识整理】(激活函数) && (梯度+梯度下降+梯度消失+梯度爆炸)
即便是x=0时,取其导数的最大值,依旧只有1/4,因此如果将sigmoid作为中间层的激活函数,在利用链式法则反向求导的过程中,很容易。表示,这其实就是一个线性表达,即便模型有无数的隐藏层,简化后依旧是上述的线性表达式,那么模型的拟合能力非常受限。梯度是根据链式法则,从后往前反向计算的。的时候,知道函数在某一点的导数其实就是在该点切线的斜率,反应了函数在该点的变化方向以及变化速率,注意这个方向其实是。Relu函数是一个分段函数,其每一段都是线性的,但由于分段使其在全局内是非线性的,音系Relu是一个。原创 2024-03-18 16:09:15 · 2338 阅读 · 0 评论