LeetCode 34. Search for a Range

LeetCode 34. Search for a Range

Description

Given an array of integers sorted in ascending order, find the starting and ending position of a given target value.

Your algorithm’s runtime complexity must be in the order of O(log n).

If the target is not found in the array, return [-1, -1].

For example,
Given [5, 7, 7, 8, 8, 10] and target value 8,
return [3, 4].

题目大意为在一个有序数组中找到所给值在数组中的范围,题目要求算法的时间复杂度为(logn),因为数组是有序的所以我们可以使用二分查找来实现。
class Solution {
    // 返回最左边或这最右边等于 target 的值在数组中的下标。
    private int extremeInsertionIndex(int[] nums, int target, boolean left) {
        int lo = 0;
        int hi = nums.length;

        while (lo < hi) {
            int mid = (lo+hi)/2;
            if (nums[mid] > target || (left && target == nums[mid])) {
                hi = mid;
            }
            else {
                lo = mid+1;
            }
        }

        return lo;
    }

    public int[] searchRange(int[] nums, int target) {
        int[] targetRange = {-1, -1};

        int leftIdx = extremeInsertionIndex(nums, target, true);

        // 断言 leftIdx 在数组范围内并且 target 在数组中
        if (leftIdx == nums.length || nums[leftIdx] != target) {
            return targetRange;
        }

        targetRange[0] = leftIdx;
        targetRange[1] = extremeInsertionIndex(nums, target, false)-1;

        return targetRange;
    }
}

Complexity Analysis

Time complexity : O(lgn)
Because binary search cuts the search space roughly in half on each iteration, there can be at most rceil⌈lgn⌉ iterations. Binary search is invoked twice, so the overall complexity is logarithmic.

Space complexity : O(1)
All work is done in place, so the overall memory usage is constant.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值