- 博客(245)
- 资源 (10)
- 收藏
- 关注
原创 文档处理新探究成果——前沿技术CCIG文档图像智能分析论坛分享
图文智能处理前沿技术一直是我所关注的技术,尤其在现在集成多态大模型的基础之上,每一次技术突破都有可能带来新的行业领域突破和技术变革。而图像图形处理技术有关的峰会和论文往年都比较少,想要了解最新前沿技术进展的机会较少,且现在能够运用图文处理技术的业务场景越来越多,技术需求和人员储备也越来越大,因此关于中国图象图形大会我们还是很有必要关注的。CCIG文档图像智能分析与处理论坛最近在苏州举办众多专家学者将齐聚苏州,开启“最强大脑”,为大家带来一场精彩的学术盛宴。
2023-05-22 12:35:30
1762
36
原创 【腾讯云 Finops Crane集训营】Finops Crane究竟能为我们带来什么价值和思考?深入探究Crane
总体体验下来,Crane无愧之为开源的超强大云资源分析与成本优化平台,无疑是解决集群资源利用率问题的高效解决方案。而且Crane部署简便,无需很繁琐的部署过程,且有着强大的云资源监控能力,能够自动化资源调度和分配,且能够智能帮助用户优化资源使用和降低成本。尤其是配备许多可视化显示大屏,很够作为二次开发嵌套到其他大屏展示网页上。能够很直观的帮助开发运维人员找到闲置资源。更加自由的可拓展性,一些可自定义的API集成到Dashboard中,可加入大数据监控以及数据流监控等。
2023-05-12 14:21:45
1479
74
原创 一文速学数模-季节性时序预测SARIMA模型详解+Python实现
时序预测模型已经写了有八篇了,传统的时序预测模型基本差不多快讲完了。对于每个时序预测模型都有各自特点最优的使用场景,但是一般来说大部分时间序列数据都呈现出季节变化(Season)和循环波动(Cyclic)。对于在这些数据基础之上进行的建模一般最优是采用季节性时序预测SARIMA模型。当然此篇文章我将尽力让大家了解并熟悉SARIMA模型算法框架,保证能够理解通畅以及推演顺利的条件之下,尽量不使用过多的数学公式和专业理论知识。以一篇文章快速了解并实现该算法,以效率最高的方式熟练使用此方法。
2023-04-20 16:42:16
1723
48
原创 损失函数(Loss Function)一文详解-分类问题常见损失函数Python代码实现+计算原理解析
我们举一个通俗的例子:”假如你玩一个抽卡游戏,这段时间新活动刚好出了一个新的角色你想要抽到她,一般来说抽到这个角色基本都要保底,大部分人都需要一个648才能抽到,但是你的手气实在太非了,氪了两个648才抽到了,那么这和你预估的结果少了一个648的钱,也就是你大抵损失的金额。“通过上面这个例子我们再将大部分人预估抽到的金额设定为Y,而且实际用到的抽奖金额为Y',那么两者的差距|Y-Y'|就是损失函数了。
2023-04-17 14:38:25
947
46
原创 2023MathorcupC题电商物流网络包裹应急调运与结构优化问题建模详解+模型代码(一)
第三次继续写数模文章和思路代码了,不知道上次美赛和国赛大家有没有认识我,没关系今年只要有数模比赛艾特我私信我,要是我有时间我一定免费出文章代码好吧!博主参与过十余次数学建模大赛,三次美赛获得过二次M奖一次H奖,国赛二等奖。!!**大家可以参考。
2023-04-14 14:52:30
2356
55
原创 手把手教你搭建自己本地的ChatGLM
如果能够本地自己搭建一个ChatGPT的话,训练一个属于自己知识库体系的人工智能AI对话系统,那么能够高效的处理应对所属领域的专业知识,甚至加入职业思维的意识,训练出能够结合行业领域知识高效产出的AI。这必定是十分高效的生产力工具,且本地部署能够保护个人数据隐私,能够内网搭建办公使用也十分的方便。而对于ChatGLM来说最大的优点就是本地能快速部署且需要资源较比与ChatGPT相当低,还要什么自行车,够用就好。甚至能够在一些性能较高的服务器单点部署,INT4 量化级别下最低只需 6GB 显存。
2023-04-12 14:22:02
5364
26
原创 一文速学数模-最优化算法(二)梯度下降算法一文详解+Python代码
最近会不断更新深度学习系列文章(全实战性+可运行代码)加入到我的一文速学-数学建模常用模型中,现在建模比赛不用深度学习的知识和技能竞争力就比较落后了,况且我也任职人工智能开发工程师,对这一块的理论和实战都比较多。而且对于学习深度学习方面知识我也比较熟悉疑难点和重要知识点,故开此系列大家可以放心订阅,质量绝对有保证且内容易学易懂实践轻松,每个知识点都接有小段代码可供验证。博主专注建模四年,参与过大大小小数十来次数学建模,理解各类模型原理以及每种模型的建模流程和各类题目分析方法。
2023-04-11 16:45:38
693
24
原创 如何高效优雅的完成一次机器学习服务部署?一文详解部署难点以及实战案例
数据准备:从公共数据集中获取数据,并进行数据清洗和特征工程处理,将数据转化为适合机器学习算法处理的格式。创建SageMaker Notebook实例:通过AWS Management Console或AWS SDK创建SageMaker Notebook实例,并连接到实例。编写代码:在Notebook中编写代码,使用Amazon SageMaker提供的XGBoost算法和数据输入通道,加载并处理数据,训练并评估模型。模型调优:通过调整模型的参数和超参数,优化模型性能。
2023-04-07 09:28:04
20745
100
原创 一文速学数模-K-means聚类算法实战:信用卡用户画像聚类分析
该项目算是非常经典的金融业务用户画像的基础分析了,主要根据用户信用卡使用行为数据进行分析,根据收集到的不同字段信息,对每个用户划分类别。这里需要说明一下的是,聚类模型只是将具有相似行为的大部分用户聚集到一个类别里面,这点并不会考虑到每个字段的含义,也就是分成的类别并不是用户价值等级,此类别仅仅是这个类别大体相同的信用卡用户行为对象,并不能给每个用户价值打上标签,那是评价模型做的事,这里要注意不要搞混淆了,用户价值评价是评价模型决定的,而画像是聚类模型分析的。
2023-04-05 21:23:11
1664
44
原创 一文速学-XGBoost模型算法原理以及实现+Python项目实战
集成模型Boosting补完计划第三期了,之前我们已经详细描述了AdaBoost算法模型和GBDT原理以及实践。通过这两类算法就可以明白Boosting算法的核心思想以及基本的运行计算框架,余下几种Boosting算法都是在前者的算法之上改良得到,尤其是以GBDT算法为基础改进衍生出的三种Boosting算法:XGBoost、LightGBM、CatBoost。大家应该都对XGBoost算法模型熟悉但是对GBDT模型一无所知,看过之前GBDT的读者应该对GBDT模型有了一个很清楚的认知,对于理解XGBoos
2023-04-03 17:58:01
1256
60
原创 探索图文处理的未来:知名学府与合合信息团队分享NLP实践经验,人工智能引领技术革新
根据众位学术技术大咖的分享来看,未来图文智能处理的发展将会更加智能化、自动化和可定制化。具体来说,未来的图文智能处理技术将会更加注重生成式人工智能技术的应用,例如深度学习、自然语言处理、计算机视觉等。这将使得处理效果更加准确和高效。同时,未来的图文智能处理技术将会更加自动化,例如自动识别文档类型、自动分类文档、自动提取文档信息等,这将进一步提高文档处理的效率和准确性。此外,未来的图文智能处理技术也将会更加可定制化,根据不同的行业和应用场景,为客户提供量身定制的解决方案。
2023-03-27 11:37:41
1371
92
原创 一文速学-GBDT模型算法原理以及实现+Python项目实战
上篇文章内容已经将Adaboost模型算法原理以及实现详细讲述实践了一遍,但是只是将了Adaboost模型分类功能,还有回归模型没有展示,下一篇我将展示如何使用Adaboost模型进行回归算法训练。首先还是先回到梯度提升决策树GBDT算法模型上面来,GBDT模型衍生的模型在其他论文研究以及数学建模比赛中十分常见,例如XGBoost,LighGBM,catboost。算法差异点GBDTXGBoostLightGBMCatBoost弱学习器CART回归树1.CART回归树2.线性学习器。
2023-03-07 17:22:16
1792
56
原创 Python常用标准库-os库一文详解(二):文件操作和路径操作
Python的os(Operating System)库是一个用于与操作系统进行交互的标准库,它提供了许多有用的函数和变量,用于访问文件系统、环境变量、进程、管道、用户和组等操作系统相关的功能。这里我为大家总结了所有OS库里面的各类功能常用函数:有这张思维导图基本就够了,基本涵盖所有涉及到的Python基础系统路径操作功能函数了。当然还有很多关于这些函数细节的,需要辅以实际代码展示例子,以更直观的看到每个函数该如何使用和操作。
2023-03-03 11:06:58
703
25
原创 Python常用标准库-os库一文详解(一):目录操作
Python的os(Operating System)库是一个用于与操作系统进行交互的标准库,它提供了许多有用的函数和变量,用于访问文件系统、环境变量、进程、管道、用户和组等操作系统相关的功能。这里我为大家总结了所有OS库里面的各类功能常用函数:有这张思维导图基本就够了,基本涵盖所有涉及到的Python基础系统路径操作功能函数了。当然还有很多关于这些函数细节的,需要辅以实际代码展示例子,以更直观的看到每个函数该如何使用和操作。
2023-03-02 10:44:08
440
10
原创 Python常用标准库-sys库一文详解
补全一下Python的基础库功能篇,之前一直写pandas和机器学习模型,偶尔换个口味写写基础的。下一作专栏估计会将文本挖掘技术和爬虫技术结合起来出一期,敬请期待。Python 标准库非常庞大,所提供的组件涉及范围十分广泛,正如以下内容目录所显示的。这个库包含了多个内置模块 (以 C 编写),Python 程序员必须依靠它们来实现系统级功能,例如文件 I/O,此外还有大量以 Python 编写的模块,提供了日常编程中许多问题的标准解决方案。
2023-02-28 16:07:54
1046
21
原创 一文速学-Pandas查询索引操作详解+实例代码展示
关于一文速学Pandas系列已经将基础部分内容更完,基础部分的内容完全可以满足大部分数据分析应用场景且绝对够用。对于分析工具最快速上手的方法还是创造条件去实际运用它,反复运用直至能够熟练想到该使用何种方法去实现该功能需求。Pandas数据分析系列专栏已经更新了很久了,基本覆盖到使用pandas处理日常业务以及常规的数据分析方方面面的问题。
2023-02-24 18:03:10
738
27
原创 一文速学-Adaboost模型算法原理以及实现+Python项目实战
集成学习的方法在全球各大机器学习、数据挖掘竞赛中使用的非常广泛,其概念和思想也是风靡学术界和工业界,我的期刊论文以及毕业百优论文也是用到了集成学习算法。而Adaboost作为最早开始流行的集成算法,必然包含boosting最核心的思想。作为一种元算法框架,Boosting几乎可以应用于所有目前流行的机器学习算法以进一步加强原算法的预测精度,应用十分广泛,产生了极大的影响。而AdaBoost正是其中最成功的代表,被评为数据挖掘十大算法之一。
2023-02-23 16:57:46
2618
31
原创 一文速学数模-集成预测模型Boost(提升方法)原理以及框架+模型速览
博主参与过大大小小数十来次数学建模,且也是从事数据分析师这一职业,理解各类模型原理以及每种模型的建模流程和各类题目分析方法。此专栏的目的就是为了让零基础快速使用各类数学模型以及代码,每一篇文章都包含实战项目以及可运行代码,博主紧跟各类数模比赛,每场数模竞赛博主都会将最新的思路和代码写进此专栏以及详细思路和完全代码,打造最实用优质数学建模专栏。专栏模型基本包含所有的预测、分类、聚类、评价、动态规划以及图论算法模型,希望有学习需求的小伙伴不要错过。
2023-02-22 14:48:37
907
53
原创 2023年美国大学生数学建模A题:受干旱影响的植物群落建模详解+模型代码(二)
资源放CSDN上面过不了审核,都快结束了都没过审真的麻了,订阅专栏的同学直接加我微信直接发你。我只打造优质专栏。专注建模四年,博主参与过大大小小数十来次数学建模,理解各类模型原理以及每种模型的建模流程和各类题目分析方法。此专栏的目的就是为了让零基础快速使用各类数学模型以及代码,每一篇文章都包含实战项目以及可运行代码。博主紧跟各类数模比赛,每场数模竞赛博主都会将最新的思路和代码写进此专栏以及详细思路和完全代码。此篇文章包含对收集到的数据处理方法和建模代码。
2023-02-20 17:43:58
1078
8
原创 2023年美国大学生数学建模C题:预测Wordle结果建模详解+模型代码(一)
美赛补全计划第二篇了属实是,正好今天是周五下班晚上通宵研究美滋滋,想当年上一次参加美赛的时候还有两个学妹在给我加油打劲,现在已经孤身一人社畜995,时光一去不复返啊。(要是有学妹给我评论加油,我直接状态拉满哈哈)还是老样子,思路和模型代码都是免费的,纯爱好。博主参与过十余次数学建模大赛,三次美赛获得过二次M奖一次H奖,国赛二等奖。建模的部分后续将会写出,!!!大家可以参考。
2023-02-18 15:43:33
4325
28
原创 2023年美国大学生数学建模A题:受干旱影响的植物群落建模详解+模型代码(一)
千呼万唤始出来啊同学们,不知道各位在上次国赛建模的时候有没有认识我啊哈哈,还是老样子,思路和模型代码都是免费的,纯爱好。作为一个已经退休的数模老学长岂有不参与一下的理由!让俺再感受一下青春竞赛的氛围,博主参与过十余次数学建模大赛,三次美赛获得过二次M奖一次H奖,国赛二等奖。建模的部分后续将会写出,想要了解更多的欢迎联系博主,免费获取代码和更多细化思路,!!大家可以参考。
2023-02-17 15:52:40
4669
75
原创 Pandas数据分析实战(一):实现指数平滑法时序数据预测分析
关于一文速学Pandas系列已经将基础部分内容更完,基础部分的内容完全可以满足大部分数据分析应用场景且绝对够用。对于分析工具最快速上手的方法还是创造条件去实际运用它,反复运用直至能够熟练想到该使用何种方法去实现该功能需求。现在就是Pandas系列专栏的重头戏,通过实例去完成对Pandas的一系列运用。该实战内容包含了对各类数据的处理以及日常业务需求的分析,包含众多大厂面试笔试考察的项目以及实际工作时常遇到的场景项目。
2023-02-15 15:54:19
1350
31
原创 PySpark数据分析基础:核心数据集RDD常用函数操作一文详解(四)
写关于RDD的操作比我想象中的要多很多,不愧是支持整个大数据计算的核心数据集,相当于Pandas的DataFrame了,而且后续的PySpark的DataFrame很多还是需要转为RDD来实现其中的一些接口功能。关于PySpark的Pandas如何实现分布式计算的过程博主还是没有搞清楚故此内容回等我研究透了再写,而使用RDD去进行分布式计算的话,不论是Spark2或者3都可以实现,而且灵活,是大数据分析师必备的能力。
2023-02-13 20:07:44
341
32
原创 PySpark数据分析基础:核心数据集RDD常用函数操作一文详解(三)
RDD作为分布式计算弹性数据集在PySpark占有十分重要的地位,因此学会如何操作RDD的pyspark的接口函数显得十分重要,PySpark系列的专栏文章目前的话应该只会比Pandas更多不会更少,可以用PySpark实现的功能太多了,基本上Spark能实现的PySpark都能实现,而且能够实现兼容python其他库,这就给了PySpark极大的使用空间,能够结合大数据集群实现更高效更精确的大数据处理或者预测。如果能够将这些工具都使用的相当熟练的话,那必定是一名优秀的大数据工程师。
2023-02-09 11:20:01
688
23
原创 一文速学(二十四)-数据分析之Pandas数据展示选项设置详解+实例代码操作展示
Pandas选项一般在数据展示和分析使用的比较频繁,尤其是配合上Jupyter Notebook使用敏捷开发时进行数据展示时,总会遇到一两个展示的问题比较头疼。而这又会牵扯到很多可视化效果的问题(比如pandas表默认科学计数法,无法展示全部数据等)。故了解Pandas选项设置是有必要的,这篇文章我会将一些pandas常用的选项设置元素一一列出其作用以及代码修改效果,另外会列出pandas部门优化选项设置,帮助更好的使用pandas。
2023-02-06 18:30:19
645
27
原创 Numpy数据分析:高级索引和索引技巧一文详解
作为数据分析三巨头Pandas、matplotlib、NumPy之一,必然要给足面子单独拿出来讲解一波。NumPy应用场景十分宽泛,Pandas很多函数转换后也都是NumPy数组类型的数据结构。在机器学习、深度学习以及一些数据处理操作中使用的频率甚至比Pandas都高。而且NumPy功能强大,使用起来也十分便捷,支持多种复杂操作。平时我的Pandas以及一些机器学习的文章都有用到NumPy,但是博客内容并没有详细解答NumPy的操作也没有记录有关NumPy操作的一些具体函数解答。
2023-02-05 21:45:36
555
19
原创 PySpark数据分析基础:核心数据类Row和Column原理及常用操作一文详解
如果之前不接触python的pandas我觉得上手pyspark会更快,原因在于pandas的dataframe操作API实在是好用,功能代码使用简便而且容易理解,相对于pyspark中的sql.dataframe就显得十分出色了。sql.dataframe数据类型的底层构造是完全和python中pandas完全不同的,而是强关联与spark的dataframe,二者有本质的区别,当然函数功能操作也是有很大的不同。
2023-02-03 16:41:45
911
17
原创 PySpark数据分析基础:核心数据集RDD常用函数操作一文详解(二)
PySpark系列的专栏文章目前的话应该只会比Pandas更多不会更少,可以用PySpark实现的功能太多了,基本上Spark能实现的PySpark都能实现,而且能够实现兼容python其他库,这就给了PySpark极大的使用空间,能够结合大数据集群实现更高效更精确的大数据处理或者预测。如果能够将这些工具都使用的相当熟练的话,那必定是一名优秀的大数据工程师。故2023年这一年的整体学习重心都会集中在这门技术上,当然Pandas以及Numpy的专栏都会更新。
2023-02-02 14:15:45
434
32
原创 PySpark数据分析基础:核心数据集RDD原理以及操作一文详解(一)
要进行大数据分析是离不开Spark的,不然怎么说是大数据呢,数据量不达到几个TB也好意思叫大数据(哈...),之前一直使用的Pandas做一些少量数据的分析处理的,发现最近要玩的数据量实在过于巨大了,不得不搬上我们的spark用集群去跑了。但是用Scala总感觉很别扭,主要是已经好久没写scala代码了,连IDEA的环境都没给配,搞起来有点麻烦。虽然建议要是写spark数据分析还是使用原生的scala要好点,但是使用python的效率确实是高,并且可以兼容他的其他环境,这是最舒服的。
2023-01-31 14:13:45
744
24
原创 一文速学数模-时序预测模型(一)灰色预测一文详解+Python实例代码
博主参与过大大小小十次数学建模比赛,也获得了不少建模奖项。对于一些小批量样本数据去做预测或者是评估其规律性的话,比较适合的模型一般都是选择灰色预测模型。该模型解释性强而且易于理解,建模手段也比较简单。在一些不确定是否存在相关标量或者是存在位置特征的时候,用灰色预测模型尤为明显,牵扯太多变量时候可以以量曾量减的方式显现其变化规律,是建模比较好用的算法和思路。但是首先我们要明白该模型的使用场景以及优缺点才能更好的解释建模的效果。故为接下来的美赛,我将把一些常用建模的模型和代码补上。
2023-01-30 14:33:46
1182
49
原创 PySpark任务提交spark-submit参数设置一文详解
之前我们已经进行了pyspark环境的搭建以及经过jupyter notebook进行过开发以及实现了一系列的函数功能.但是一般我们跑spark都是在集群上面跑,只有测试一般在本地上测试,而且每个公司配置的spark集群的端口和设置的参数都有很大出入,故每种情况都有可能发生。所以一般任务提交的参数最好都需要能够清楚的明白对应功能。很多spark任务都会吃大量的内存以及队列资源,合理的安排spark资源十分重要,这些都需要我们在spark-submit指令上面配置。
2023-01-12 16:35:28
2069
31
原创 一文数学数模-相关性分析(一)肯德尔相关性分析一文详解+python实例代码
Kendall(肯德尔)系数的定义:n个同类的统计对象按特定属性排序,其他属性通常是乱序的。同序对()和异序对()之差与总对数(n*(n-1)/2)的比值定义为Kendall(肯德尔)系数。与斯皮尔曼秩相关相似的是,肯德尔相关也是一种秩相关系数,是基于数据对象的秩(rank)来进行两个(随机变量)之间的相关关系(强弱和方向)的评估。所分析的目标对象应该是一种有序的类别变量,比如名次、年龄段、肥胖等级(重度肥胖,中度肥胖、轻度肥胖、不肥胖)等。
2023-01-10 15:17:40
657
23
原创 一文数学数模-相关性分析(二)斯皮尔曼相关(spearman)相关性分析一文详解+python实例代码
经常用希腊字母ρ表示。它是衡量两个变量的依赖性的非参数指标。它利用单调方程评价两个统计变量的相关性。如果数据中没有重复值, 并且当两个变量完全单调相关时,斯皮尔曼相关系数则为+1或−1。斯皮尔曼相关系数被定义成等级变量之间的皮尔逊相关系数。对于样本容量为n的样本,n个原始数据被转换成等级数据,相关系数ρ为:在实际应用或是具体题目中,变量间的连结是无关紧要的,将观测的两个变量的对应元素相减得到一个差值,则还可以将上述公式转化为:其中,为和之间的等级差。
2023-01-09 11:31:29
3989
28
原创 一文数学数模-相关性分析(三)皮尔逊相关性分析一文详解+python实例代码
相关性分析算是很多算法以及建模的基础知识之一了,十分经典。关于许多特征关联关系以及相关趋势都可以利用相关性分析计算表达。其中常见的相关性系数就有三种:person相关系数,spearman相关系数,Kendall's tau-b等级相关系数。各有各自的用法和使用场景。当然关于这以上三种相关系数的计算算法和原理+代码我都会在我专栏里面写齐全。目前关于数学建模的专栏已经将传统的机器学习预测算法、维度算法、时序预测算法和权重算法写的七七八八了,有这个需求兴趣的同学可以去看看。
2023-01-05 14:15:35
2026
6
原创 sklearn预测评估指标计算详解:准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1score
很多时候需要对自己模型进行性能评估,对于一些理论上面的知识我想基本不用说明太多,关于校验模型准确度的指标主要有混淆矩阵、准确率、精确率、召回率、F1 score。机器学习:性能度量篇-Python利用鸢尾花数据绘制ROC和AUC曲线机器学习:性能度量篇-Python利用鸢尾花数据绘制P-R曲线sklearn预测评估指标:混淆矩阵计算详解-附Python计算代码这里我们主要进行实践利用sklearn快速实现模型数据校验,完成基础指标计算。
2023-01-03 11:11:07
3748
20
原创 sklearn预测评估指标:混淆矩阵计算详解-附Python计算代码
很多时候需要对自己模型进行性能评估,对于一些理论上面的知识我想基本不用说明太多,关于校验模型准确度的指标主要有混淆矩阵、准确率、精确率、召回率、F1 score。机器学习:性能度量篇-Python利用鸢尾花数据绘制ROC和AUC曲线机器学习:性能度量篇-Python利用鸢尾花数据绘制P-R曲线这里我们主要进行实践利用sklearn快速实现模型数据校验,完成基础指标计算。
2022-12-30 15:39:14
2931
11
原创 一文速学(二十三)-数据分析之Pandas处理时间序列数据-时间/日期操作详解
一文速学-Pandas中DataFrame转换为时间格式数据与处理一文速学-Pandas处理时间序列数据操作详解日常处理一些数据和业务上需求,其实还是十分常用到时序数据的,一些处理方法我感觉都是比较麻烦的,还存在很多方法没有详细说明。于是基于两篇内容之上,再对Pandas的处理时间数据进行深入功能挖掘,一些很好用的方法和处理这两篇文章还是没有覆盖到的。作为查漏补缺这个系列的文章将会把pandas处理时间序列数据的内容都给将完全。
2022-12-29 16:05:51
464
1
原创 Pandas常用I/O函数(七):to_csv()函数及全部参数使用方法一文详解+实例代码
Pandas常用作数据分析工具库以及利用其自带的DataFrame数据类型做一些灵活的数据转换、计算、运算等复杂操作,但都是建立在我们获取数据源的数据之后。因此作为读取数据源信息的接口函数必然拥有其强大且方便的能力,在读取不同类源或是不同类数据时都有其对应的read函数可进行先一步处理,这会减少我们相当大的一部分数据处理操作。
2022-12-27 17:40:35
1998
15
原创 (包含源代码)2022年全国大学生数学建模竞赛E题目-小批量物料生产安排详解+思路+Python代码时序预测模型-补完
在确定各项评价指标权重的算法中,熵权法在很多评价法作为计算指标权重的一只核心基础算法,如秩和比综合评价法RSR或是优劣解距离法TOPSIS。易于理解的话来讲,熵权法就是看该指标数据是否相对集中或是相对离散,要是基本上都差不多的数据,那么这些数据熵就很小,比较集中。说明在这个指标上面体现不出样本的差异性,导致这个指标并不是那么重要。所以该指标权重就小,相反数据差距很大,权重就大。
2022-12-26 15:35:41
974
17
原创 AI作画的背后是怎么一步步实现的?一文详解AI作画算法原理+性能评测
AI作画依赖于多模态预训练,实际上各类作画AI模型早已存在,之所以近期作品质量提升很多,可能是因为以前预训练没有受到重视,还达不到媲美人类的程度,但随着数据量、训练量的增多,最终达到了现在呈现的效果。”远在AI作画还没有爆火之前,深度学习就已经可以根据图片库训练学习生成一些真假难辨的图片了,那时候仅仅依赖的是GAN神经对抗网络算法实现,现在随着模型的迭代优化,已经有了越来越多的模型能够实现一些较为复杂的图片生成。
2022-12-19 18:13:23
11227
24
cchardet-2.7.1-cpy310
2023-04-13
jython-installer-2.7.3.jar
2022-10-26
已编译版本solr-8.11.2.tgz
2022-08-26
apache-maven-3.8.6-bin+安装教程
2022-08-24
hive3.1.0-antrl3.5.2-Hivegrammar源码.zip
2022-08-23
Dependency Walker2.2
2022-08-23
pyjnius-1.4.2-cp37-cp37m-win32.whl
2022-08-23
pyjnius-1.4.2-pp37-pypy37_pp73-win_amd64.whl
2022-08-23
antlr-repackaged-4.0.jar
2022-08-23
antlrworks-1.5.1.jar
2022-08-22
antlr-3.4.jar
2022-08-22
hadoop3.3.3-winutils
2022-07-19
scrt-sfx-9.0.0.2430+使用教程
2022-06-13
机器学习之数据均衡算法种类大全+Python代码一文详解
2022-06-05
dbeaver+navicat
2022-05-30
sqldeveloper-21.4.3.x64+jdk1.8
2022-05-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人