一文速学数模-预测模型(一)Logistic原理详解以及Python项目实现

本文深入介绍了Logistic回归模型,包括Logit模型、几率、Logistic模型的原理。通过最优化方法确定最佳回归系数,讲解了梯度上升算法及其优化,以及在预测病马疝气死亡率的实战应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

一、Logistic回归模型

二、Logit模型

三、几率

四、Logistic模型

五、基于最优化方法的最佳回归系数确定

5.1梯度上升算法

5.1.1梯度

5.1.2使用梯度上升找到最佳参数

5.2、画出决策边界

5.3、  随机梯度上升

5.4、优化随机梯度上升

六、实战:从疝气病症预测病马的死亡率

总结


提示:以下是本篇文章正文内容,下面案例可供参考

一、Logistic回归模型

logistic回归(Logistic Regression)是一种广义线性回归(Generalized Linear Model),在机器学习中是最常见的一种用于二分类的算法模型,由于数学原理简单,方便理解,作用高效,其实际运用相当广泛。为了通过自变量的线性组合来预测类别因变量的取值,logistic回归模型应运而生。logistic回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释,多类可以使用softmax方法进行处理。实际中最为常用的就是二分类的logistic回归。虽然带有回归二字,但实则是分类模型,下面从最基础的logit变换开始理解。

二、Logit模型

对于研究因变量(结果)与引发其变化的因素自变量(因素)的关系时,我们想到最基础的方法就是

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fanstuck

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值