目录
提示:以下是本篇文章正文内容,下面案例可供参考
一、Logistic回归模型
logistic回归(Logistic Regression)是一种广义线性回归(Generalized Linear Model),在机器学习中是最常见的一种用于二分类的算法模型,由于数学原理简单,方便理解,作用高效,其实际运用相当广泛。为了通过自变量的线性组合来预测类别因变量的取值,logistic回归模型应运而生。logistic回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释,多类可以使用softmax方法进行处理。实际中最为常用的就是二分类的logistic回归。虽然带有回归二字,但实则是分类模型,下面从最基础的logit变换开始理解。
二、Logit模型
对于研究因变量(结果)与引发其变化的因素自变量(因素)的关系时,我们想到最基础的方法就是